

ATOME - PHOTONEN - QUANTEN - Institute für Angewandte Physik - TU Darmstadt

Cold Atoms and Laser Development for Spectroscopy on Trapped Highly Charged lons

C. Ewen, M. Fraczek, J. Kruse, A. Lengwenus, J. Nes, M. Scherer, M. Schlosser, F. Steinebach, W. v. Drunen, M. Wagner, O. Wille, N. Herschbach, G. Birkl

Institut für Angewandte Physik, Technische Universität Darmstadt

in collaboration with: - Institut für Quantenoptik, Universität Hannover - GSI, Uni. Frankfurt, Uni Mainz, Imperial College, ...

Funded by the DFG Focused Research Programs 'Quantum Information Processing' and 'Interactions of Ultracold Atoms and Molecules', BMBF Program 'Hadron and Nuclear Physics', the projects 'ACQP', 'Atom Chips', and 'SCALA' of the European Commission, and by ARDA/NSA/DTO/NIST

Project Overview

Integrated Atom Optics (ATOMICS)

BEC in Optical Trapping Potentials

Quantum Information Processing with Atoms

Ultracold Collisions of Metastable Neon

Laser Spectroscopy on Trapped Highly Charged Ions

Project Overview

Integrated Atom Optics (ATOMICS)

Guiding Structures based on Micro-Optical Systems

Micro-optical Lens Arrays:

Guiding of atoms along the linear potential minimum in the focus of a cylindrical lens

Waveguide for atoms similar to optical fibers

Beam Splitter

X-type beam splitter for atom samples based on the cylindrical microlenses

Structure for a Mach-Zehnder Interferometer for Guided Atoms

Experimental demonstration of structures for guidedatom interferometry based on optical micro-structures

R. Dumke, T. Müther, M. Volk, W. Ertmer und G. Birkl, PRL 89, 220402 (2002)

Project Overview

Integrated Atom Optics (ATOMICS)

BEC in Optical Trapping Potentials

Trap Geometries

BEC or Towards BEC ?

Measurement of density and temperature (TOF 10 ms)

Uncertainty: T±30 nK

Matter Wave Optics

Matter wave optics in optimized and complex micro- and nanostructures

- Compact atom interferometer geometries as quantum sensors
- Resonator for atomic matter waves

Project Overview

Integrated Atom Optics (ATOMICS)

BEC in Optical Trapping Potentials

Quantum Information Processing with Atoms

- Unit of Classical Information:

- Unit of Quantum Information:

,**Qubit':**
$$|0\rangle$$
 and/or $|1\rangle$, e.g internal states of atoms

$$|\mathbf{qubit}\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

- Deutsch, Shor, Grover et. al.: Quantum algorithms can perform specific tasks (significantly) faster than classical algorithms Example: Shor algorithsm for factoring large numbers.
- Investigation of Fundamental Aspects of Quantum Physics

Scalable Register for Atomic Qubits

Multiple realization of dipole traps by focusing a (far) red-detuned laser beam with a microlens array

Very tight foci due to high numerical aperture possible

Sufficiently low rate of spontaneous emission

Individual dipole traps can be selectively addressed due to large separation of the microlenses (typically 125 µm)

Refraktive und diffraktive Mikrolinsen

Atoms in far detuned dipole trap arrays can serve as a two-dimensional register for qubits:

R. Dumke, M. Volk, T. Müther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, Phys. Rev. Lett. **89**, 097903 (2002).

Atoms in far detuned dipole trap arrays can serve as a two-dimensional register for qubits:

Number of traps > 80

Parameter for dipole trap array:

P = 1 mW per Trap

Trap size $w_0 = 7 \mu m$

Trap depth 1 mK

Temperature 20 µK

Atoms per trap 100-1000

Lifetime up to 2 s (depending on detuning)

R. Dumke, M. Volk, T. Müther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, Phys. Rev. Lett. **89**, 097903 (2002).

Quantum Processor

- State preparation and detection of single atoms
- 1-qubit gates based on coherent Raman transitions
- 2-qubit gates based on collisional phase shift (and others)
- Interferometric test of entanglement and qubit interaction

Coherent Qubit Rotation (Ramsey- and Spin-Echo)

Scalable Coherent Qubit Rotation

Simultaneous Ramsey Measurements in 16 different dipole traps

Control of Trap Separation

Efficient operation of quantum gates requires strong (state selective) interaction of qubits

Control of trap separation:

- Use of two independant microlens arrays
- Irradiation of one microlens array by two laser beams with variable angle
- Minimum distances are 0 or range down to about 2µm for sep. traps.
- State-selective transport of qubits

Project Overview

Integrated Atom Optics (ATOMICS)

BEC in Optical Trapping Potentials

Quantum Information Processing with Atoms

Ultracold Collisions of Metastable Neon

Metastable Neon: from Atomic Physics to BEC

Atomic physics

• Lifetime of the metastable state ? Previous measurement: 22s

Collision physics

- Rates of elastic and inelastic collisions
- Suppression of Penning-Ionization by spinpolarization: 10⁴ ?

Electronic Detection

- Direct, highly efficient detection of Ne* and Ne*
- Real-time detection of ions
- Spatially resolved detection of atoms

Bose-Einstein-Condensation

- Investigation of collective excitations
- Measurement of higher order correlation functions

0

Lifetime of the ³P₂ (3s[3/2]₂) state

Determination of Scattering Length

 Compare theory curves of σ_{rel}(a, T) for different values of a with experimental data

• Scattering length:

²⁰ Ne:
$$a = -180^{+40}_{-40}a_0$$

²² Ne: $a = +150^{+80}_{-50}a_0$

P. Spoden et al., PRL 94, 223201 (2005)

Trap Loss

Analysis:

$$\dot{N} = -\alpha N - \beta \underbrace{\frac{N^2}{V_{eff}}}_{\text{heating !}} \rightarrow \frac{1}{t} \log \frac{N(t)}{N(0)} = -\alpha - \beta \left(\frac{1}{t} \int_0^t dt' \,\overline{n}(t')\right)$$

²⁰Ne

 β_{pol} = 6.5(18) 10⁻¹² cm³ s⁻¹ Suppression: 38(16)

²²Ne

 β_{pol} = 12(3) 10⁻¹² cm³ s⁻¹ Suppression: 7(5)

'Crossed' Dipole Trap

Trap parameters:

- Fiber laser: λ = 1065nm, P=40 W
- Waist of ~50 µm
- \bullet Beams cross at an angle of 3°
- Loading from magnetic trap or MOT

Detection:

Absorption imaging, MCP

Loading of ³P₀ metastable neon

Method:

- Load ³P₂ atoms from MOT
- Apply laser pulse resonant with the ³P₂→³D₁ transition at 598 nm while the trap laser is shortly switched off
- Half of the atoms are transferred to the ³P₀ metastable state, the other half decays to the ground state via ¹P₁ emitting easily detectable UVphotons
- Atoms in the ³P₀ metastable state are detected as time-of-flight signal on a MCP after turning off the dipole trap
- Using absorption imaging we can confirm that no atoms remain in the ³P₂ state

Project Overview

Integrated Atom Optics (ATOMICS)

BEC in Optical Trapping Potentials

Quantum Information Processing with Atoms

Ultracold Collisions of Metastable Neon

Laser Spectroscopy on Trapped Highly Charged lons

Laser Spectroscopy at RETRAP and HITRAP

Fine Structure Measurements

- Ca¹⁵⁺ λ=250nm
- As¹⁹⁺ λ=244nm

Hyperfine Structure Measurements

- ²⁰⁷Pb⁺ λ=710nm

H-like lons

- ²⁰⁹Bi⁸²⁺ λ= 239nm
- ²⁰⁷Pb⁸¹⁺ λ=973nm
- ²³⁵U⁹¹⁺ λ=1528nm

➔ Highly Flexible Laser System needed !

element	ion	type	λ (nm)	$t ({\rm ms})$	Ι	$\mu (\mu_N)$
lead	$^{207}{\rm Pb}^{81+}$	H-like	973	45	1/2	0.59
bismuth	${}^{209}{ m Bi}{}^{82+}_{209}{ m Bi}{}^{80+}$	H-like Li-like	239 1469	0.38 87	9/2	4.11
protactinium	²³¹ Pa ⁹⁰⁺ ²³¹ Pa ⁸⁸⁺	H-like Li-like	262 1511	0.64 123	3/2	2.01
lead [12] chlorine [13]	²⁰⁷ Pb ⁺ ³⁵ Cl ⁺	$P_{3/2} - P_{1/2}$ ${}^{3}P_{2} - {}^{1}D_{2}$ ${}^{3}P_{1} - {}^{1}D_{2}$	710 858 913	41 n.n. n.n.	1/2 3/2	0.59 0.82
argon [14]	³⁷ Ar ²⁺	${}^{3}P_{2} - {}^{1}D_{2}$ ${}^{3}P_{1} - {}^{1}D_{2}$	714 775	n.n. n.n.	7/2	1.3

Commercial Laser System available (NEW FOCUS)

TLB-6300 Tunable Lasers New wavelength ranges from 630 to 2 μm Cavity design eliminates mode-hops Smooth, linear, mode-hop-free tuning New-2 µm! VELOCITY" Turable-Dedet NEW FOCUS 75.5 U.S. Patent #5,319,668

1470– 1545 nm	1415– 1480 nm	1520– 1570 nm
4 mW	3 mW	20 mW
10 mW	8 mW	20 mW
20 nm/s	20 nm/s	20 nm/s
0.02 nm	0.02 nm	0.02 nm
0.1 nm	0.1 nm	0.1 nm
30 GHz (0.23 nm)	30 GHz (0.24 nm)	30 GHz (0.24 nm)
2 kHz	2 kHz	2 kHz
100 MHz	100 MHz	100 MHz
<300 kHz	<300 kHz	<300 kHz
TLB-6326	TLB-6327	TLB-6328

Laser System for UV and 1000 nm range

Tuning Range of Titanium:Sapphire System:

 λ = 700nm to 1000nm

Standard Approach for Creation of UV-Radiation:

- Fourth Harmonic Generation in two successive frequency doubling cavities

- Fundamental: λ = 956 to λ = 1000 nm

- Expected Power: 1mW to 5 mW

Laser System for UV range

Alternative Approach for Creation of UV-Radiation:

- Third Harmonic Generation in two successive enhancement cavities
- Fundamental: λ = 717 to λ = 750 nm
- Advantage: Operation of Ti:Sa close to maximum of output power

FIG. 1. Schematic of the setup for generation of the third harmonic of a Ti:S laser. BS: beamsplitter, QP: quartz plate, PZT: piezo, L: mode-matching lens, CL: cylindrical lens, M: mirror, and HC: Hänsch–Couillaud locking setup.

Reference: J. Mes, E.J. van Duijn, R. Zinkstok, S. Witte, W. Hogervorst, 'Third harmonic generation of a contineous-wave Ti:Sapphire laser in external resonant cavities', Appl. Phys. Lett. **82**, 4423 (2003)

Laser System for UV range

Results at Amsterdam:

- Wavelength: $\lambda = 272 (\lambda = 817 \text{ nm/3})$
- Pump Power: 10 W
- Output Power:
 - up to 175 mW achieved
 - at 900 mW Ti:Sa Power: 50 mW at 272nm
- Extension to 240 nm expected
- Quality and optical properties (absorption of UV) might reduce conversion efficiency.

FIG. 3. Output power of the third harmonic as function of Ti:S power.

Reference: J. Mes, E.J. van Duijn, R. Zinkstok, S. Witte, W. Hogervorst, 'Third harmonic generation of a contineous-wave Ti:Sapphire laser in external resonant cavities', Appl. Phys. Lett. **82**, 4423 (2003)

Laser System for UV range

Results at Amsterdam:

- Wavelength: $\lambda = 272 (\lambda = 817 \text{ nm/3})$
- Pump Power: 10 W
- Output Power:
 - up to 175 mW achieved
 - at 900 mW Ti:Sa Power:50 mW at 272nm
- Extension to 240 nm expected
- Quality and optical properties (absorption of UV) might reduce conversion efficiency.

WE WILL FIND OUT !!

Reference: J. Mes, E.J. van Duijn, R. Zinkstok, S. Witte, W. Hogervorst, 'Third harmonic generation of a contineous-wave Ti:Sapphire laser in external resonant cavities', Appl. Phys. Lett. **82**, 4423 (2003)

Summary

For more information: www.iap.physik.tu-darmstadt.de/apq