

Hyperfine Splitting in Highly-Charged lons

Richard Thompson, Danny Segal Blackett Laboratory Imperial College London J. Krämer, W. Nörtershäuser, M. Vogel, D. Winters GSI

Outline

- 1. What is the purpose of the experiment?
- 2. How will the measurement be made?
- 3. What techniques will be applied?
- 4. Why is space charge important?
- 5. Conclusions

What is the purpose of the experiment?

- To study hyperfine structure in the ground state of hydrogen-like highly charged ions
 - High-order QED effects in strong electromagnetic fields
 - Nuclear polarisation also has an effect
 - Measurement in H-like and Li-like ions separates QED
- Ground state HFS splitting proportional to Z^3
 - Hydrogen: 1400 MHz (21 cm)
 - H-like lead: 300 THz (1.02 µm)

How will the measurement be made?

- For Z > 70 the ground state HFS splitting can be reached with lasers directly
- Laser spectroscopy is a good technique to use
 - Highly sensitive
 - High precision
 - Non-invasive
 - Non-destructive

What techniques will be applied?

- We will store HCI from HITRAP in a cryogenic Penning trap
 - Long ion lifetime in trap
 - Very clean environment
 - No Doppler shift as in ion beam experiments
 - Good for laser spectroscopy
- For good signal/noise we need
 - Low Doppler width: Cold ions
 - Large ion number: High Density
- See Danyal Winters' and Manuel Vogel's talks for trap details

Schematic of the Experiment

Page 6

Need for cold ions

- Doppler width at 300 K is 250 MHz
 - Limits resolution
 - Reduces maximum signal
- Doppler width at 4 K is 30 MHz
 - At 4K lifetime of ions is also much longer
- Needs cryogenic vacuum system and resistive cooling of ion cloud
 - Then expect signals of several thousand counts per second

Page 7

Resistive cooling

 A single ion induces an image charge in the two endcaps of the trap

Resistive cooling

- A single ion induces an image charge in the two endcaps of the trap
- Motion of the ion gives
 - Current in external circuit
 - Dissipates energy
 - Potential across endcaps
 - Provides damping force on ion

Circuit is normally made to be resonant at axial oscillation frequency of ions

Resistive cooling

- A single ion induces an image charge in the two endcaps of the trap
- Motion of the ion gives
 - Current in external circuit
 - Dissipates energy
 - Potential across endcaps
 - Provides damping force on ion
- In equilibrium ion has same temperature as the resistor

q depends linearly on the ion displacement from trap centre

Need for high density

- About 10⁵ ions available per pulse
 - Need maximum overlap with laser beam
 - High density to bring all ions within beam diameter
- Needs use of rotating wall technique:
 - Stops ion cloud spreading out in radial direction
 - Increases density by spinning cloud to higher rotation frequencies
- Space charge effects come into play at high densities

Why is space charge important?

- Resistive cooling is effective for a single ion
 And for the centre of mass mode of a cloud
- But space charge leads to flattening of potential curve at trap centre
 - Gives shifts of ion oscillation frequencies
 - Resonant external circuit only provides cooling over a narrow range of frequencies
 - At high densities cooling no longer effective

Why is space charge important?

- Also internal motions in a pure cloud do not induce a current in the electrodes
 - Therefore there is no cooling of internal modes

 $v \uparrow \bigcirc \bigcirc$

- Need a mechanism for internal modes to couple to external circuit
 - Collisions with residual gas
 - Impurities in the cloud
 - Nonlinearities due to finite size of electrodes

Resistive cooling with finite sized electrodes

- Potential is steeper near electrodes than at trap centre
 - Hence image charge induced by moving charge has cubic term
 - Now sensitive to internal motions
 - But effect very small

Resistive cooling with finite sized electrodes

- Cubic term is bigger for small electrodes
 - But effect at trap centre is always small

Page 15

© Imperial College London

Effect of nonlinear terms in the potential (3 ions, 1-D trap)

current

other

0.0004 0.0005 0.0006

0.0007

Page 16

© Imperial College London

Effect of nonlinear terms in the potential (3 ions, 1-D trap)

- Centre of mass mode cools quickly from linear term
 - Exponential decay
- Breathing mode needs quadratic term
 - e.g. from misalignment of trap
 - Cools slower and with power law decay
- Third mode needs cubic term
- Amplitude of current in circuit does not reflect true amplitude of motion

Cooling of cloud in 3-D (uniform damping)

Page 18

Frequency spectra of motion

Page 19

© Imperial College London

Conclusions

- Spectroscopy of HFS splitting in HCI can yield new information on QED effects in strong fields
- Experiment needs cold ions and high densities
- Space charge effects must be considered carefully for effective cooling of all degrees of freedom of cloud