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Outline
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What is the purpose of the experiment?

• To study hyperfine structure in the ground state of 
hydrogen-like highly charged ions
– High-order QED effects in strong electromagnetic fields
– Nuclear polarisation also has an effect
– Measurement in H-like and Li-like ions separates QED

• Ground state HFS splitting proportional to Z3

– Hydrogen: 1400 MHz (21 cm)
– H-like lead:  300 THz (1.02 µm)

F=I+1/2

F=I-1/2
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How will the measurement be made?

• For Z > 70 the ground state HFS splitting can 
be reached with lasers directly

• Laser spectroscopy is a good technique to 
use
– Highly sensitive
– High precision
– Non-invasive
– Non-destructive

Earlier GSI measurement
in  beam of hydrogen-like lead
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What techniques will be applied?

• We will store HCI from HITRAP in a cryogenic 
Penning trap
– Long ion lifetime in trap
– Very clean environment
– No Doppler shift as in ion beam experiments
– Good for laser spectroscopy

• For good signal/noise we need
– Low Doppler width:  Cold ions
– Large ion number:  High Density

• See Danyal Winters’ and Manuel 
Vogel’s talks for trap details
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Schematic of the Experiment
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Need for cold ions

• Doppler width at 300 K is 250 MHz
– Limits resolution 
– Reduces maximum signal

• Doppler width at 4 K is 30 MHz
– At 4K lifetime of ions is also much longer

• Needs cryogenic vacuum system and 
resistive cooling of ion cloud
– Then expect signals of several thousand counts 

per second
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Resistive cooling

• A single ion induces an 
image charge in the two 
endcaps of the trap

RQ
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Resistive cooling

• A single ion induces an 
image charge in the two 
endcaps of the trap

• Motion of the ion gives
– Current in external circuit

• Dissipates energy

– Potential across endcaps
• Provides damping force on ion

RQ

–q

+q

i   

v

Circuit is normally made 
to be resonant at axial 
oscillation frequency of 
ions
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Resistive cooling

• A single ion induces an 
image charge in the two 
endcaps of the trap

• Motion of the ion gives
– Current in external circuit

• Dissipates energy

– Potential across endcaps
• Provides damping force on ion

• In equilibrium ion has 
same temperature as the 
resistor

R

–q

Q

+q

q depends linearly on 
the ion displacement 

from trap centre
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Need for high density
Laser beam

• About 105 ions available per pulse
– Need maximum overlap with laser beam
– High density to bring all ions within beam 

diameter
• Needs use of rotating wall technique:

– Stops ion cloud spreading out in radial 
direction

– Increases density by spinning cloud to 
higher rotation frequencies

• Space charge effects come into play 
at high densities

High 
density

Low 
density
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Why is space charge important?

• Resistive cooling is effective for a single ion
– And for the centre of mass mode of a cloud

• But space charge leads to flattening of potential 
curve at trap centre
– Gives shifts of ion oscillation frequencies
– Resonant external circuit only provides cooling over a 

narrow range of frequencies
– At high densities cooling no longer effective
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Why is space charge important?

• Also internal motions in a pure 
cloud do not induce a current 
in the electrodes
– Therefore there is no cooling of 

internal modes
– Need a mechanism for internal 

modes to couple to external 
circuit

• Collisions with residual gas
• Impurities in the cloud
• Nonlinearities due to finite size of 

electrodes

R
Qv

–v Q
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Resistive cooling with finite sized electrodes

• Potential is steeper 
near electrodes 
than at trap centre
– Hence image 

charge induced by 
moving charge has 
cubic term

– Now sensitive to 
internal motions

– But effect very small
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Resistive cooling with finite sized electrodes

• Cubic term is bigger for small electrodes
– But effect at trap centre is always small
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Effect of nonlinear terms in the potential 
(3 ions,  1-D trap)
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Effect of nonlinear terms in the potential
(3 ions, 1-D trap)

• Centre of mass mode cools quickly from 
linear term
– Exponential decay

• Breathing mode needs quadratic term
– e.g. from misalignment of trap
– Cools slower and with power law decay

• Third mode needs cubic term
• Amplitude of current in circuit does not reflect 

true amplitude of motion
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Cooling of cloud in 3-D (uniform damping)
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Frequency spectra 
of motion
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Conclusions

• Spectroscopy of HFS splitting in HCI can 
yield new information on QED effects in 
strong fields

• Experiment needs cold ions and high 
densities

• Space charge effects must be considered 
carefully for effective cooling of all degrees of 
freedom of cloud
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