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What do we want to measure?

Binding energy —»

Energy of the ground state hyperfine transition in highly charged ions

with an accuracy of 10/ / R

(b) e.g. 2V’Pb81*
......... = IR
Z 2 ox10% Hz | € angular momentum
AByes
......... b For heavy H- and Li-like ions this
F=0 transition Is in or near the visible

Magnetic field ——> (AE~Z3, 1~Z9) -> laser spectroscopy



Why do It in a cryogenic trap?

natural linewidth ~ 3 Hz

lons can be cooled nearly to rest Doppler-broadened 30 MHz
: : transition frequency ~ 10 Hz
-> small Doppler shift and broadening  gxcitation lifetime ~ ms

-> relative accuracy ~ 107
lons are well-localized
-> |aser irradiation is easy

Many ions in a dense ion cloud can be investigated at
the same time
-> high fluorescense signal

Extended time for measurement
-> makes life easier, allows slow transitions



Wanted trap properties

High harmonicity
-> well-defined and calculable trap frequencies

Optically accessible (,transparent”)
-> efficient laser excitation and detection

Designed for in-flight capture and storage of a HITRAP ion bunch
-> effective loading

Designed for cooling and compression of an ion cloud
(resistive cooling, ,rotating wall®)
-> |ocalisation, dense ion cloud




What kind of trap to use?

hyperbolic trap cylindrical trap

high harmonicity low harmonicity can be corrected for
optically closed optically accessible
not easy to build comparatively easy to build



Reality looks like this:
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Scheme of the envisaged setup
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Capture and trapping sequence
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Rotating wall technique

Use segmented ring electrode to create a rotating dipole field
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Choice of the magnetic field strength

Cloud diameter [mm]

Cloud dimensions and ion number density as a function of B
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Already forB=1 T
expected S/N is 50




Overall status

trap — built, being tested offline (J.Kramer)

vacuum housing — built

rotating wall drive — designed, ordered

trap electronics — being designed

excitation lasers and fluorescence detection — being designed
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Resistive cooling: single particle
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Axial motion

Exponential energy loss of the moving particle with time constant t

Typical t of order milliseconds



power dissipation [rel. units]

Resistive cooling of an ion cloud
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measurement: cloud of about 20 °C>* ions in a Penning trap
(H. Haffner et al.)
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Effective cooling of c.m. motion only,
Trap imperfections cool other motions (much less effectively)

-> Large clouds: cooling times of several s



	What do we want to measure?
	Why do it in a cryogenic trap?
	Wanted trap properties
	Reality looks like this:
	Overall status
	Resistive cooling: single particle
	Resistive cooling of an ion cloud

