A Penning trap for precision laser spectroscopy of highly charged ions

<u>M. Vogel,</u> J. Krämer, D. Winters, W. Nörtershäuser, G. Birkl, R. Thompson, D. Segal

What do we want to measure?

Energy of the ground state hyperfine transition in highly charged ions with an accuracy of 10^{-7} ,

Why do it in a cryogenic trap?

lons can be cooled nearly to rest-> small Doppler shift and broadening

natural linewidth ~ 3 Hz Doppler-broadened 30 MHz transition frequency ~ 10^{14} Hz Excitation lifetime ~ ms -> relative accuracy ~ 10^{-7}

lons are well-localized -> laser irradiation is easy

Many ions in a dense ion cloud can be investigated at the same time -> high fluorescense signal

Extended time for measurement -> makes life easier, allows slow transitions

Wanted trap properties

High harmonicity-> well-defined and calculable trap frequencies

Optically accessible ("transparent") -> efficient laser excitation and detection

Designed for in-flight capture and storage of a HITRAP ion bunch -> effective loading

Designed for cooling and compression of an ion cloud (resistive cooling, "rotating wall") -> localisation, dense ion cloud

What kind of trap to use?

cylindrical trap

high harmonicity optically closed not easy to build

low harmonicity can be corrected for optically accessible comparatively easy to build

Reality looks like this:

Scheme of the envisaged setup

Capture and trapping sequence

Rotating wall technique

Use segmented ring electrode to create a rotating dipole field

Choice of the magnetic field strength

Cloud dimensions and ion number density as a function of B

Already for B=1 T expected S/N is 50

Overall status

trap – built, being tested offline (J.Krämer) vacuum housing – built rotating wall drive – designed, ordered trap electronics – being designed excitation lasers and fluorescence detection – being designed

A proposed precision laser spectrometer for trapped highly charged ions

M. Vogel, D.F.A. Winters, D. Segal and R.C. Thompson Rev. Sci. Instr. **76** (2005) 103102

Plans for laser spectroscopy of trapped cold hydrogen-like HCI D.F.A. Winters, A.M. Abdulla, J.R. Castrjon Pita, A. deLange, D.M. Segal, R.C. Thompson

Nucl. Instr. Meth. B 235 (2005) 201

Hyperfeinstruktur-Spektroskopie M. Vogel, D.F.A. Winters, R.C. Thompson Physik in unserer Zeit, 36. Jahrgang (2005), Nr.4, Seite 156

Electronic detection of charged particle effects in a Penning trap D.F.A. Winters, M. Vogel D. Segal and R.C. Thompson J. Phys. B **39** (2006) 3131

Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields D.F.A. Winters, M. Vogel, D.M. Segal, R.C. Thompson and W. Nörtershäuser accepted for Can. J. Phys. (2006)

Resistive cooling: single particle

Axial motion

Exponential energy loss of the moving particle with time constant τ

Typical τ of order milliseconds

Resistive cooling of an ion cloud

measurement: cloud of about 20 ¹²C⁵⁺ ions in a Penning trap

(H. Häffner et al.)

Effective cooling of c.m. motion only, Trap imperfections cool other motions (much less effectively)

-> Large clouds: cooling times of several s