The HITRAP Cooler Penning Trap

TRAPPING AND COOLING OF HIGHLY-CHARGED IONS IN A PENNING TRAP

- Introduction
- The low energy beam line
- The Penning trap
- Status + outlook

F. Herfurth, **S. Koszudowski**, **G. Maero,** W. Quint

K. Blaum, **D. Neidherr,**

G. Zwicknagel

The HITRAP linear Decelerator

Injection into the Cooler Trap

LEB Line is based on electrostatic Einzel lenses to cope with energy spread $\pm 4\%$ and emittance 100 π mm mrad

Differential pumping to achieve p<10⁻¹³ mbar in the trap

Injection into the Cooler Trap

F. Herfurth for the HITRAP collaboration

Injection into the Cooler Trap

The Solenoid

- > SC magnet, B = 6 T, 400 mm, 0.1%
- > Delivery in November 2006
- Complete trap environment at 4.2 K
- Design drawings of electrodes are ready
- > Preparation of electronics and cabling

The Cooler Penning Trap

The electric field along the trap axis

HITRAP

Resistive Cooling

Ion Cloud Formation

Particle in Cell (PIC) calculations + viscous cooling force + Brownian motion

Space Charge Effects

100,000 U⁹²⁺ in a 6 T Penning Trap

F. Herfurth for the HITRAP collaboration

The Vertical Beam Line

- ≻ Pressure < 10⁻¹⁰ mbar
 → ion pumps, NEG pumps and NEG coating
- Particle optics calculations completed
- Design drawings of quadrupoles and kickerbender prepared
- Low energy beam diagnostics built at KVI:
 Fluorescence screen (YAG),
 MCPs, Faraday cups

Status of the HITRAP cooler Trap

• HITRAP will deliver large amounts of heavy and highly charged ions at low energy

• The Cooler Trap will be the final stage for cooling and shaping the ion bunch to be sent to experiments

• Intensive design work has been carried out since almost two years and is in an advanced stage

• Simulation work of the ion cloud behavior shows first results – next step = extraction

• by the end of the year a preliminary setup (Cooler Trap with MAXEBIS ion source) will be installed to test the trap's properties and capabilities experimentally

