RuG

HCI induced ionization/fragmentation: influence of the target electronic structure

•metallic bonds - delocalized electrons (e.g. fullerenes, Na-clusters)

-charge equilibration before fragmentation -few multiply charged atomic fragments

•van der Waals bond – localized electrons (e.g. Ar-clusters)

-strong charge localization -highly charged fragments coinciding with singly charged fragments

covalent bond - intermediate
(e.g. S-clusters)
·data under evaluation

•here: polyatomic (bio)molecules

the AMOLF TeraWatt fs-laser system

- chirped pulse amplification
- typically ~10 mJ @ 100 fs / 50 Hz
- 1 cm beam diameter focused to ~ 10 μm
- typical maximum fields of ~ 5 \times 10¹⁷ W/cm²

setup

HCI induced collisions:

- -fragment ion detection in event by event mode (FAST P7888 TDC, 1 ns resolution)
- -electron-fragment-fragment coincidences

under construction

reaction microscope for fragment ions (for coincident multi-fragment detection)

laser induced collisions:

- -fragment ion detection in analog mode
 - (HP Infinium digital storage scope, 1 GHz, 1 ns res.)
- -only "singles" spectra
- -no coincidence information
- -additional parameter: laser polarization

uracil mass spectra - HCI vs fs-laser

similar pattern for fs-laser and HCI

uracil mass spectra - HCI vs fs-laser (zoom)

•

kinetic energy release - two bodies

HD⁺⁺ fragmentation

KER in the fs-laser case - velocity map imaging

velocity map image of m=68 uracil fragment @ 40 mW, 100 fs

fragment kinetic energies

simulation results

- interaction between charged particles
 soft-core Coulomb potential
 geometry taken from *ab initio* calc.
 outermost e⁻ placed into Coulomb well
- time dependent external dipole field
 moving Xe²⁵⁺ ions (point charge)
 tunneling according to ADK model
 re-collisions allowed

newton's equations are num. solved •propagation of the system until interaction becomes negligible

future perspectives for HCI -cluster/molecule interactions

two important issues:

- need for kinematically more complete data reaction microscope + multicoincidence capabilities
- ongoing fragmentation research with XFEL pulses need for VERY highly charged ions at various collisions energies for comparison

Both issues could be combined in future HITRAP experiments !

thanks

KVI

Ronnie Hoekstra

Fresia Alvarado

Sadia Bari

Przemek Sobocinski

AMOLF

Marc Vrakking

Sebastien Zamith

Franck Lépine

FU Berlin

Eckart Rühl

Roman Flesch

Tiberiu Arion

Lyon University

Serge Martin

Li Chen

Jérôme Bernard

CIRIL/GANIL

Bernd Huber

Bruno Manil

Jimmy Rangama

Virgil Bernigaud

funding:

HUST

Koninklijke Nederlandse Akademie van Wetenschappen

