Ultracold atoms as targets

Wenzel Salzmann Simone Götz Judith Eng Roland Wester Matthias Weidemüller

Physikalisches Institut Albert-Ludwigs-Universität Freiburg Atomare und Molekulare Quantendynamik

EU and ESF DAAD

Matthias Weidemüller Roland Wester *(Habil)*

Mixtures of ultracold atoms and ultracold chemistry Stephan Kraft (PostDoct) Jörg Lange (Doct) Johannes Deiglmayr (Doct) Christian Giese (Dipl) Leif Vogel (Dipl)

Cold atom targets / coherent control with femtosecond pulses

Wenzel Salzmann (Doct) Terry Mullins (Doct) Simone Götz (Doct) Judith Eng (Dipl) Magnus Albert (Dipl)

Ultracold Rydberg gases and plasmas

Markus Reetz-Lamour (Doct) Thomas Amthor (Doct) Sebastian Westermann (Dipl) Janne Denskat (Dipl) Andre de Oliveira (GuestProf)

Quantum dynamics of ion-molecule reactions at low energies

Jochen Mikosch (Doct) Sebastian Trippel (Doct) Rico Otto (Dipl) Christoph Eichhorn (Dipl) Markus Debatin (Dipl)

Ultracold atoms and a heavy-ion beam

Magneto-optical trap (MOT) in a storage ring

Light-pressure force for confinement (Zeeman effect) and cooling (Doppler effect)

Recoil ion momentum spectroscopy

cf. Robert Moshammer / Joachim Ullrich

Momentum information from time-of-flight plus 2D ion image

Momentum resolution is limited by **temperature** and **localiztion** of target gas

Magneto-optical trap: T ~ 100 μ K $\rightarrow \Delta$ p ~ 0.01 a.u. Δ r ~ 100 μ m

Heidelberg Test Storage Ring

Implementation into the storage ring

Implementation into the storage ring (cont'd)

Loading concept

Control of the target position

Shift of the quadrupole magnetic field center by additional homogeneous magnetic field

Reaction of the ion beam on the MOT control field:

Interaction of fast ions with atoms

Impact ionization:

Electron capture:

Detection of interactions: Fluorescence

Stereoscopic detection with two cameras for determination **of atom cloud's position**

Detection of interactions: lonized atoms

TSR-MOT as a beam profile monitor

Ion count rate for a 2D scan of atom cloud position

(cloud dia. ~ 100 mm)

Comparison with rest-gas BPM

ADVANTAGES of the cold-atom BPM

- Sensitivity down to low ion currents (<10 nA)
- Better resolution than rest-gas BPM
- Direct 2D beam profile

Total collision cross sections

Decay rate versus ion flux

Ion flux determined from calibrated BPM count rate

Dependence on charge state

Dependence of the cross section on the charge state C^{q+} - Cs collisions

Comparison with theory

Dependence of the cross section on the charge state C^{q+} - Cs collisions

Ionization vs. electron capture

Detection of electron capture

 $C^{6+}(6.1 \text{ MeV/u}) + Cs \rightarrow C^{5+} + Cs^{q+}$

Electron capture cross section

Distribution of final charge states

Electron capture: C^{6+} + $Cs \rightarrow C^{5+}$ + Cs^{q+} @ 6.1 MeV/u

Optical dipole traps

Transfer into the optical dipole trap (absorption images)

Trap parameters

	Cs	Li
trap depth	1000 μK	400 μ K
eff. temperature	30 μ Κ	~ 100 μK
# of stored atoms	~ 106	~ 10 ⁵
transfer efficiency	7%	0.03%
peak density	~ 10 ¹² cm ⁻³	~ 10 ¹⁰ cm ⁻³

density distribution

Atoms can be polarized in any internal state!

Creation of a cold Rydberg gas

Creation of a cold Rydberg gas

Rydberg excitation 3 nS / nD ~479.8nm 5P_{3/2} ~780nm 5S_{1/2}

K. Singer et al., PRL 93 163001 (2004)

Detection of the Rydberg atoms

Field ionization

K. Singer et al., PRL 93 163001 (2004)

High Rydberg excitation efficiency

Portable cold-atom target

Portable MOT system with recoil-ion momentum spectrometer

Recoil spectrometer courtesy Niels Andersen (Copenhagen)

Dark-Spot MOT

Permanently loaded high-density cloud of ultracold atoms

Properties of cold-atom targets

- Full control over important target parameters (number of target atoms, density, target position and size)
- Full control over internal degrees of freedom (spin polarization, ground state vs. Rydberg states)
- High isotope selectivity
- Limited loading flux and densities
- Large repertoire in cooling, trapping and manipulation techniques

Prospects at HITRAP

1. Trapped atoms as a probe

for precision experiments with dilute beams

Improved copy of the TSR concept (enhanced loading flux, improved position control) possibly combined with photon detectors

2. COLTRIMS with an ultracold Rb, Li or other species target for kinematically complete collision experiments

Combination of COLTRIMS technology with atom manipulation techniques (e.g. high-flux source)

3. Ultracold molecules as targets for studies of interactions with highly-charged ions

Combination of COLTRIMS technology with atom manipulation techniques (e.g. high-flux source)

4. Cold Rydberg atoms as an electron target for studies of ion-electron interactions

Two- or three-step laser excitation of trapped alkali atoms into highly-excited states