The Heavy Ion Storage Ring ESR

FSR (former ESR) team K. Beckert, C. Dimopoulou F. Nolden, U. Popp, M. Steck

main activity: FAIR storage ring design

ESR:

operation for physics experiments

some machine development towards FAIR

The ESR Electron Cooler

electron beam parameters

energy	1.6 – 250 ke
current	0.001 – 1 A
diameter	50.8 mm
gun perveance	1.95 μP
collection efficiency	/ > 0.9998
temperature	
transverse	0.1 eV
longitudinal	~ 0.1 meV

magnetic field

strength straightness 1×10⁻⁴

0.015 - 0.2 T

vacuum

2×10⁻¹¹ mbar

Stochastic Cooling at the ESR

Fast pre-cooling of hot fragment beams energy 400 (- 550) MeV/u bandwidth 0.8 GHz (range 0.9-1.7 GHz) $\delta \mathbf{p}/\mathbf{p} = \pm 0.35 \% \rightarrow \delta \mathbf{p}/\mathbf{p} = \pm 0.01 \%$ $\varepsilon = 10 \times 10^{-6} \text{ m} \rightarrow \varepsilon = 2 \times 10^{-6} \text{ m}$ pick-up combiner station signal lines kicker power amp 10 m

M. Steck, Low Energy Atomic Physics at Cave A and HITRAP, GSI, November 20, 2006

electrodes installed inside magnets

combination of signals from electrodes

power amplifiers for generation of correction kicks

Typical Deceleration Cycle

U^{92+} 300 \rightarrow 30 \rightarrow 20 MeV/u

<u>supercycle</u>

- Injection
- Cooling
- Centering
- Deceleration
- Cooling (change of harmonic)
- Deceleration
- Cooling
- Extraction
- ultra-slow beam extraction by charge changing• Resetlowest energy with slow extraction: 12 MeV/u

Deceleration of U⁹²⁺ from 400 to 3 MeV/u

Parameters of U⁹²⁺ at Low Energy

Energy Dependence of Beam Parameters

For constant cooling rate the equilibrium beam parameters increase with decreasing beam momentum

equilibrium: $\tau_{IBS}^{-1} = \tau_{cool}^{-1}$ $\tau_{IBS}^{-1} \alpha ((\beta \gamma)^3 \varepsilon_x \varepsilon_y \delta p/p)^{-1}$

Beam Losses During Deceleration

Losses increase with intensity of stored ion beam

Causes:

- adiabatic emittance growth
- imperfections of components
- intrabeam scattering

number of decelerated particles $\leq 10^8$

Profile of Fast Extracted Beam

Stability of Extracted Beam

Abberation from average mean value (extracted from gauss fit)

image number

position of extracted beam stable to better than \pm 0.5 mm

GSİ

Parameters of Bunched Beams

comparison coasting beam - bunched beam as a function of the line density

bunched beams show the same IBS dominated beam parameters as coasting beams

for HITRAP: with a bunching factor B=0.25 emittance and momentum spread will increase by a factor of about 2.

Test of Barrier Bucket Generation

Barrier buckets tests for the FAIR project

- beam transfer
- beam accumulation (secondary beams)

modification of ESR cavity (broadband) allows operation at h=1 with rf amplitude 170 V

alternative: capacitive load to lower eigenfrequency to 250 kHz

Potential ESR Upgrades for HITRAP

- Compress decelerated beam to less than 1 microsecond (B=0.25)
- Optimize beam transport to HITRAP (focussing, position, stability)
- Optimize beam diagnostics
- Accelerate deceleration: reduce cycle time:

present deceleration cycle time of about 60 sec. cooling time 15, 5, 10 sec deceleration 10 + 5 sec injection, extraction, ramping up 10 s

measures:

stochastic cooling after injection

(\rightarrow faster cooling, reduced ramping of cooler)

faster ramping (ramp rate 0.5 T/s was demonstrated)

but: time consuming developments