

A novel four-trap mass spectrometer for high-accuracy mass measurements on highly-charged ions

Sz. Nagy, K. Blaum, S. George, F. Herfurt, J. Ketelaer, W. Quint, S. Stahl UNI-Mainz, GSI Darmstadt

Outline:

- Penning traps as mass spectrometers
- Related physics and recent results using HCI
- Features of the novel apparatus
- Present status
- Outlook

Penning traps as mass spectrometers

P.B. Schwinberg, R.S. vanDyck, H.G Dehmelt, Phys. Lett 81A, 119 1981

1989 Nobel Prize in Physics: Dehmelt, Paul, Ramsey

28

1990

Smiletrap (2002)

2000

2010

www.quantum.physik.uni-mainz.de/mats

Low-energy atomic physics experiments at HITRAP and Cave A

What can be done using high accuracy mass spectrometry

and all these (and many more) can be done using highly charged ions...

In the case of ²³⁸U max. 92X higher resolving power can be achieved by using q=92+ ions.

Recent results using HCI at SMILETRAP

The layout of the cryogenic four trap-mass spectrometer

What's new? Features

~75 mm

²³⁸ U ⁹²⁺ Reference Monit	tor Timi	Timing scheme:			
• • •	T_1	T_2	T_3	Α	
Monitor trap				•	
Preparation trap2				•	
Measurement trap				• • Ca	
Preparation trap1					

Advantages:

- Cryogenic temperatures
- Highly-charged ions
- Non-destructive ion detection
- Direct electron binding energy measurement
- No ion-ion interaction
- Short measurement cycle
- Continuous *B*-field monitoring/ calibration

T = 4.2 K $\delta B/B < 10^{-7}/\text{cm}^3$, $(\delta B/\text{d}t) \cdot (1/B) < 10^{-10}/\text{h}$

> Goal: δ*m/m* ≤ 1·10⁻¹¹ δm(²³⁸U⁹²⁺) =2 eV

Cryogenic FT-ICR detection with single ion sensitivity

Pickup-Elektrode ion current signal Low Noise Amplifier FFT-Analyzer t very small

signal ~fA

Pickup-Elektrode

Fourier-Transform-Ion Cyclotron Resonance

Signal-to-noise ratio:

r_{ion}: ion motion radius Q: quality factor $\frac{S}{N} = \frac{\sqrt{\pi}}{2} \cdot \frac{r_{ion}}{D} \cdot \mathbf{q} \cdot \sqrt{\frac{\nu}{\Delta \nu}} \cdot \sqrt{\frac{Q}{kT \cdot C}}$

D: trap dimension q: charge state T: temperature C: capacity

mass

spectrum

Already available in Mainz

Precision trap

Monitoring Trap

Status

$$U(r,d) = \frac{1}{2} V_0 \sum_{keven=0}^{\infty} C_k \left[\frac{r}{d}\right]^k P_k(\cos\Theta)$$

Ideal trap: C₂=1, C_{k(even)>2}=0

 $C_4 \neq 0$, gives ω_z shift

Simulations, field calculations *-done*. Estimated S/N ratio, Cooling times T, *-available*. Trap dimensions, *-calculated*, Magnet is specified, price quotation, *-available*.

The road to high precision & accuracy with the new 4-trap spectrometer

- Precision electrodes, 1cm±5µm
- Compensation electrodes, C4, C6, D2 <<
- Stable voltage source, eg. standard cell, 100 nV in 10 V
- Strong, homogeneous and stable *B*-field, *B*=7 *T*, *δB*/*B*<10⁻⁷/*cm*³, (*δB*/*dt*)·(1/*B*)<10⁻¹⁰/*h*
- Cooling, *T*=4.2 K
- High Q-value circuit, Q>15000
- UHV- vacuum, *P*<10⁻¹²*mbar*
- single HCI,

Working programe and time table

2006	Design study; numerical simulations; field calculations; magnet specifications, CAD drawings of Penning traps
2007	Magnet ordering; cryostat specifications and drawings; trapmachining; final design for resonance circuits, beam transport in SIMION, off line ion source construction
2008	Magnet comissioning; cryostat alignement, experimental chamber alignment versus B, tests at 4.2 K
2009	Control and data acquisition system; comissioning the full setup, first test with real ions from offline source; single ion detection tests
2010	Test measurements with singly charged ions, determination of systematic uncertainties, preparation for HCI
20XX	Spectrometer is ready to take HCI beam

Acknowledgements

My colleagues from the MATS group at UNI-MAINZ, and all co-workers from GSI are acknowledged!

Thanks for €€€ to:

Deutsche Forschungsgemeinschaft DFG

VH-NG-037

