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First Edition (August 1994)
This edition of AIX Version 4.1 Writing a Device Driver applies to AIX Version 4.1 and to all
subsequent releases of AIX until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: THIS MANUAL IS PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions; therefore, this statement may not apply to you.

It is not warranted that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements or
that the publication or the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication.

It is possible that this publication may contain references to, or information about, products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that such products,
programming, or services will be offered in your country. Any reference to a licensed
program in this publication is not intended to state or imply that you can use only that
licensed program. You can use any functionally equivalent program instead.

The information provided regarding publications by other vendors does not constitute an
expressed or implied recommendation or endorsement of any particular product, service,
company or technology, but is intended simply as an information guide that will give a better
understanding of the options available to you. The fact that a publication or company does
not appear in this book does not imply that it is inferior to those listed. The providers of this
book take no responsibility whatsoever with regard to the selection, performance, or use of
the publications listed herein.

NO WARRANTIES OF ANY KIND ARE MADE WITH RESPECT TO THE CONTENTS,
COMPLETENESS, OR ACCURACY OF THE PUBLICATIONS LISTED HEREIN. ALL
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE SPECIFICALLY DISCLAIMED. This disclaimer does not apply to the United
Kingdom or elsewhere if inconsistent with local law.

A reader’s comment form is provided at the back of this publication. If the form has been
removed, address comments to Publications Department, Internal Zip 9630, 11400 Burnet
Road, Austin, Texas 78758-3493. To send comments electronically, use this commercial
internet address: aix6kpub@austin.ibm.com. Any information that you supply may be
used without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract.
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About This Book

AIX Version 4.1 Writing a Device Driver contains an overview of block and character device
drivers and describes how to write a device driver for AIX Version 4.1. Also included is
information on debugging and packaging device drivers.

Who Should Use This Book
This book is intended for programmers and software support personnel who need detailed
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How to Use This Book

Overview of Contents
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• Chapter 9 is about Virtual File Systems.
• Chapter 10 described the STREAMS-based tty interface.
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• Chapter 12 discusses implementing a network device driver.
• Chapter 13 is about network interfaces and protocols.

Chapter 14 contains information on debugging device drivers.

The appendix contains reference information about some new kernel services and network
services.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.



 xiv AIX Version 4.1 Writing a Device Driver

Related Publications
The following books contain information about or related to writing device drivers:

• AIX Version 4.1 Commands Reference, Order Number SBOF-1851.

• AIX Version 4.1 General Programming Concepts Volume 1: Writing Programs, Order
Number SC23-2533.

• AIX Version 4.1 General Programming Concepts Volume 2: Debugging Programs, Order
Number SC23-2490

• AIX Version 4.1 Communications Programming Concepts, Order Number SC23-2610.

• AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts, Order
Number SC23-2611.

• AIX Version 4.1 Files Reference, Order Number SC23-2512.

• AIX Version 4.1 Problem Solving Guide and Reference, Order Number SC23-2606

• AIX Version 4.1 Technical Reference, Volume 5: Kernel and Subsystems, Order Number
SC23-2618.

• AIX Version 4.1 Technical Reference, Volume 6: Kernel and Subsystems, Order Number
SC23-2619.

• PowerPC Architecture, Order Number SR28-5124.

• POWERstation and POWERserver Hardware Technical Information-General
Architectures, Order Number SA23-2643.

• UNIX System V Release 4, Programmer’s Guide: STREAMS. Englewood Cliffs, N.J.:
Prentice-Hall, 1990.

• Angebranndt, Susan, Drewry, Raymond, Karlton, Philip, Newman, Todd, Packard, Keith
and Scheifler, Robert W. Strategies for Porting the X v11 Sample Server. Massachusetts
Institute of Technology. 1991.

• Fortune, Erik and Israel, Elias. The X-Window Server. Digital Press.

• Gettys, James, Newman, Ron and Scheifler, Robert W. Xlib––C Language X Interface,
MIT X Consortium Standard, X Version 11, Release 5. MIT X Consortium 1991.

• Leffler, Samuel J., and others. The Design and Implementation of the 4.3 BSD UNIX
Operating System. Addison-Wessley. 1990.

• Patrick, Mark, and Sachs, George. X11 Input Extension Library Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

• Patrick, Mark, and Sachs, George. X11 Input Extension Protocol Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

• Sachs, George. X11 Input Extension Porting Document. MIT X Consortium Standard. X
Version 11, Release 5. Hewlett-Packard Company and the Massachusetts Institute of
Technology. 1989, 1990, 1991.

• Scheifler, Robert W. X Window System Protocol, MIT X Consortium Standard, X Version
11, Release 5. MIT X Consortium 1991.

• Womack, et. al. PEX Protocol Specification, Version 5.1, MIT X Consortium Standard.
Massachusettes Institute of Technology 1988, 1989, 1990, 1991, 1992.



Preface  xv

• Womack, et. al. PEX Protocol Encoding Version 5.1, MIT X Consortium Standard.
Massachusettes Institute of Technology 1988, 1989, 1990, 1991, 1992.

Ordering Additional Copies of This Book
You can order publications from your sales representative or from your point of sale.

If you received a printed copy of Documentation Overview with your system, use that book
for information on related publications and for instructions on ordering them.

To order additional copies of this book, use Order Number SC23-2593.



 xvi AIX Version 4.1 Writing a Device Driver



1-1Device Driver Overview

Chapter 1. Device Driver Overview

Many computer programs are dedicated to working with attached devices in some way. For
example, there are programs to send control characters to a printer, programs to receive
characters from a terminal, and programs to read data from a tape. In a broad sense, each
of these programs is a device driver because the program is dedicated to handling input
from or output to a device. Such programs are usually regarded as being part of, or an
extension of, the computer’s operating system.

Any operating system that supports multitasking (such as AIX) needs some way to prevent
one program from writing to, or changing the state of, some device that is already being
accessed by another program. So, a multitasking operating system relies on the computer’s
processors to distinguish between privileged and non-privileged execution of instructions.
Therefore, one must distinguish between programs that execute in privileged mode (kernel
mode) and those that execute in user mode. The AIX kernel consists of all software that
executes in kernel mode.

Even though AIX programs that execute in user mode can drive devices, such as a printer or
some device attached to a serial port, they can only do so by invoking software that is part of
the kernel. Because kernel device drivers are considerably more complex than drivers that
execute in user mode, from here on, the term device driver will only refer to software that
handles a device while executing in kernel mode.

Device drivers are more complex than user software for several reasons:

• Device drivers output data to a device or demand data from a device.

This means that the driver may have to read or write to registers on a card attached to an
I/O bus, or the driver may have to set up the means for the data to be transferred in
some other way. A device driver is intimately interconnected with processor memory
design, how the processor performs I/O, and with the architecture of the I/O bus attached
to the system. So, device drivers are not portable; migrating the driver routines from one
system to another often requires the routines to be rewritten.

• Device drivers may have to process interrupts generated by a card attached to the
system I/O bus.

When a terminal sends a character to the computer, or a printer runs out of paper, or a
tape drive has completed writing a block of data, the card serving as an adapter between
the device and the I/O bus on the computer generates an interrupt. The software
routines, within a device driver, that process interrupts (called interrupt handlers) take
some sort of action like buffering incoming data, or signaling a process. Because such
interrupts occur asynchronously, meaning that they occur without regard to what
instructions the computer’s processors are executing, the interrupt may occur while a
processor on the computer is in the middle of handling another interrupt. Therefore,
interrupt handlers must be reentrant; in other words, they must be able to access shared
resources (such as non-private data) and exclude concurrent access by any software
including another instance of itself.

Device driver routines that (asynchronously) execute in the context of handling an
interrupt are said to be, on the interrupt side, and are occasionally referred to as the
device handler, but this is not the same thing as a network device handler.

Device driver routines that (synchronously) execute in the context of a calling process
are said to be on the call side. For more information on concurrent access of shared
data, see Chapter 5, “Synchronization and Serialization.”
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• Device drivers may have to execute in real time.

Device drivers may have to respond to an interrupt, or perform some other function within
a certain fixed period of time.

• A device driver is a collection of routines. There is no main routine.

The routines are usually written in C and compiled to produce one or two Extended
Object File Format (XCOFF) object files. The object files are linked to enable the kernel
loader to resolve kernel symbols. As a result of linking, the loader section is filled out with
a list of symbols to import from the kernel. The symbols are in the file /lib/kernex.exp.
The linking also establishes the driver’s configuration routine as the default entry point for
beginning execution. A simple example is shown in “Sample Device Driver” on page
1-14.

Aspects of the Kernel that Affect Device Drivers
There are a number of attributes of the AIX kernel that affect device drivers:

• Kernel routines can only call kernel services.

Kernel routines cannot call routines meant to execute in user mode. So, device driver
routines are not linked with the C library libc.a, nor can they invoke system calls. There
are some kernel DMA and timer routines in libsys.a, and there are some C library calls
written to execute in kernel mode in the library libcsys.a.  For more information on them,
please refer to “Understanding Kernel Binding,” in AIX Version 4.1 Kernel Extensions and

Device Support Programming Concepts.

• Kernel code and data that is not pinned (explicitly or implicitly) is paged into system RAM
from a paging logical volume on disk.

So, one must distinguish between device driver routines that are to be collectively
pinned, called the bottom half, and those that are to be paged, called the top half.
Because device driver routines on the interrupt side must be pinned, the phrases in the
bottom half  and on the interrupt side  are sometimes used as if they are synonyms, but
they really are not synonyms. Due to real-time concerns, sometimes routines on the call
side are placed in the bottom half.

• Kernel routines are difficult to debug.

There is a kernel debugger, but it is not as easy to use as is dbx. References to improper
addresses may cause data corruption (because the kernel is privileged) or a system
crash. It is possible to trace the execution of a device driver with printf; but printf only
prints to a native serial port, cannot be used in an interrupt handler, and may affect a
device driver’s timing.

• Execution of kernel routines, in the context of a process, can be preempted by the
scheduler in favor of a process with greater priority.

This means that device driver routines cannot depend on disabling interrupts as being
sufficient to avert concurrent access to shared resources. It also means that drivers (not
just interrupt handlers) must be reentrant.

• The AIX kernel is dynamically extendible.

Object files acceptable to the kernel loader, are bound into the AIX kernel while the
computer is still operating; there is no need to restart the system. A device driver’s
routines are typically linked to form two object files (one for the top half, the other for the
bottom half), that can be loaded or unloaded by a user program invoking the kernel
loader with the sysconfig system call. Loading (configuring) files into the kernel is
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extending the kernel. A kernel extension, such as a device driver, is configured into the
kernel while starting the system, or while the system is operating.

The AIX Kernel figure summarizes some aspects of the AIX kernel that affect device drivers.
Note that AIX enables kernel processes,  processes that execute entirely in kernel mode.
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How Device Drivers Are Accessed

In many operating systems, a user who wants to transfer data to a device must execute a
command specific to that device. In such an operating system, writing to tape requires a
different command than writing to a terminal, or writing to a file.

A feature of any UNIX operating system, such as AIX, is that I/O to a device is made to look
like I/O to a file in the system’s directory tree. A device is made ready for I/O by having its
corresponding file (usually placed in the directory /dev) opened, and data is read from the
device, or written to the device, by invoking read and write system calls on the
corresponding file. The device (for example, a printer) is freed for access by other software
by closing the file (called a device special file) associated with the device.

UNIX avoids the need to pass a device-specific parameter to system calls so that UNIX can
present the same device interface to any user program accessing different devices. It does
this by keeping device-specific data in the inode of the device special file. Such data
includes:

• A flag marking the file as special

• A major number identifying which device driver is to be invoked (such as for a tape drive
or printer)
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• A minor number identifying a particular device among the several devices handled by the
device driver associated with the major number (for example, selects tape1 or printer3).

• A flag marking the device type as character or block

The file, created by the mknod system call, is marked special so that system calls know to
access a device, and not a file on disk.

The major number serves as an index into an array of structures. Each structure contains
pointers to functions to be invoked when opening, closing, reading, writing, or performing
whatever device operation the program requires. The array of these structures is called a
device switch table. The Device Switch Table figure illustrates these structures.

crw––––––– 1 root system 25, 0 Aug 05 16:19 tty0

open21

22

23

24

25

26

27

28

Device Switch Table

16 entries

close
read
write
ioctl
strategy
tty struct
select
config
print
dump
mpx
revoke
dev. specific data
select cntl blocks
devsw cntl word

Program:

fd = open(”/dev/tty0”)

read(fd, buf, n)

pointers to:

major
number

In AIX, the device switch table can have up to 256 such structures. When the driver is
configured into the kernel, each function pointer in the structure is assigned the virtual
address of the first instruction of an associated routine, that is, the virtual address of a
routine’s entry point. If a device driver does not define a particular routine (no drivers define
all of them), use either a pointer to the function nodev, which returns ENODEV (in
sys/errno.h), or a pointer to the function nulldev, which returns NULL.

In effect, the major number specifies which device driver to invoke. If there is a serial port
with one driver, and, say, a multiport serial adapter which requires another driver, then each
would have their own unique major number. On the other hand, if you have a high-density
tape drive attached to one adapter, and a different, low-density tape drive attached to
another adapter, but a driver supports both kinds of adapters, then there is only one major
number needed to access either tape drive.

The minor number is used to distinguish between devices supported by the same driver. It
typically serves as an index into an array, maintained by the driver, of structures containing
device-specific information. For example, a terminal driver would need to keep track of the
various baud rates or parity settings of each terminal.

Once a program has opened a file, it uses the file descriptor to determine the device number
which combines the device’s major and minor number into one integer. The program that
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configures the device driver into the kernel allocates a device number that is unique for the
system. The figure From File Descriptor to Device Number shows the data structures
involved in determining a device number from a file descriptor associated with the device’s
special file.
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On some UNIX systems, there is a device switch table for character drivers, and one for
block drivers, hence the need for a flag c or b to mark the distinction. Some UNIX systems
access a stream head (a generic interface to STREAMS modules or drivers) through a third
device switch table. However, in AIX, the entry points to character drivers, block drivers, and
stream heads are all invoked through the same device switch table. The kinds of routines
that are expected to be included as entry points for a device driver vary with the type of
device driver needed.

Types of Device Drivers
There are three types of device drivers in AIX:

• A block device driver supports a device that reads and writes data buffers of a (large)
fixed size
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• A STREAMS device driver has some routines that are either invoked from a stream head,
or from a STREAMS module, instead of from the device switch table.

• A character device driver is any driver that is not either of the other two types.

Block Device Drivers
Devices usually supported by a block device driver include: hard disk drives, diskette drives,
CD-ROM readers, and tape drives. Block device drivers often provide two ways to access a
block device:

raw  access The buffer supplied by the user program is to be pinned in RAM as is.

block  access The buffer supplied by the user program is to be copied to, or read from
buffers in the kernel.

If the block device is accessed as raw, the driver can copy data from the pinned buffer to the
device. In this case, the size of the buffer supplied by the user must be equal to, or some
multiple of, the device’s block size. The special file’s name is usually prefixed by the letter r
so that a user can tell which access type the block device has. For example, the name of a
diskette drive’s raw block special file is rfd0, and a special file name for a tape drive is rmt0.

Sometimes the term character mode access is used to mean raw access.

Otherwise, the block device is accessed as block. In this case, a write system call to such a
device returns once the user buffer is copied to buffers in the kernel segment. The write call
is asynchronous since the data in the kernel buffer is written out to the block device
sometime after the write call returns. The size of the user buffer need not be a multiple of
the device block size.

The term buffer cache refers to a collection of kernel buffers that are manipulated by some
kernel services specifically associated with block devices. Although UNIX block device
drivers have traditionally made use of the buffer cache, it is rarely used in AIX because
buffering is more frequently done by memory mapping regions of the kernel segment with
frames in RAM.

A block device driver with a block access type method is a driver that also provides a
strategy routine to arrange accesses to device blocks so that overall access time is
minimized. The strategy entry point is not invoked from a user program; rather, the entry
point, which is in the device switch table, can be invoked by either of the following:

• Off-level interrupt handlers responsible for writing the buffer cache out to disk.

• The AIX Virtual Memory Manager to perform paging, that is, to page space for working
segments, to disk files for memory-mapped files.

The block driver’s strategy routine is intended for reading and writing buffers that are not
necessarily contiguous on the device itself.

A tape device driver has a raw access method, but has no block access method. There is no
use of kernel buffers, and there is no reason to provide a strategy entry point since tape
does not lend itself to efficient random access.

For more information on implementing a block device driver, see Chapter 7, “Block Device
Drivers.”

Block devices are often intended to contain a file system. A block device driver that
interfaces to the Logical Volume Manager (LVM) enables the block device to support a
journaled file system (JFS). For more information on this, see “Logical Volume
Programming,” in AIX Version 4.1 General Programming Concepts Volume 1: Writing

Programs, and “Understanding Physical Volumes and the Logical Volume Device Driver” in
AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts.
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For a block device to contain a file system that is not provided with the operating system,
kernel routines that interface between the virtual file system (VFS) and the block device
driver must be provided. For more information on this, see “Virtual File Systems,” in
AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts, and
Chapter 9, “Writing a Virtual File System.”

STREAMS Device Drivers
Devices that may be supported by a STREAMS driver include: any device connected to the
serial port (such as a terminal), or any device attached to a LAN or WAN (such as an
Ethernet adapter).

Such devices lend themselves to support from STREAMS drivers because the STREAMS
facility is flexible and modular. These qualities that are well suited to implementing
communication protocols.

Since the TTY subsystem in AIX  Version 4.1 consists of STREAMS modules, if you want to
support terminal processing from a serial adapter  you must provide a STREAMS driver. For
more information on this, see Chapter 10, “STREAMS-Based TTY Subsystem Interface.”
Chapter 11, “Implementing Graphical Input and 2-D Graphics Device Drivers”, contains
related information about the low-function terminal (LFT) subsystem that supports use of a
console display.

AIX provides a STREAMS driver, the Data Link Protocol Interface (DLPI), which supports
some LAN adapters. For more information on this, see Chapter 12, “Implementing a
Network Device Driver.”

A stream is a linked list of kernel modules, and consists of a stream head at one end of the
list and a STREAMS device driver at the other. To visualize how a stream works, see the
STREAMS Driver Entry Points figure on page 1-13.

The stream head (supplied with the operating system as part of STREAMS, a device driver
writer does not need to write a stream head) contains some routines that are invoked from
the device switch table, so the stream head is associated with a device special file in the AIX
file tree.

A STREAMS driver has some routines that are either invoked by the stream head, or by a
STREAMS module that had been inserted into the stream between the stream head and the
STREAMS driver. The driver may, or may not, have any routines that are invoked from the
device switch table.

For more information on this, see “STREAMS,” in AIX Version 4.1 Communications
Programming Concepts, and  UNIX System V, Release 4, Programmer’s Guide: STREAMS.

Character Device Drivers
Devices that are supported by a character device driver include any device that reads or
writes data a character at a time (such as printers, sound boards, or terminals). Also, any
driver that has no associated hardware device (called a pseudo-driver) is treated as a
character device driver. For example, /dev/mem, /dev/kmem, and /dev/bus0 are character
pseudo-drivers.

Graphics input devices and graphics capable displays are often supported by character
device drivers. For more information on how to implement such drivers, see Chapter 11,
“Implementing Graphical Input and 2D Graphics Device Drivers.”

A character special file that has the mode flag S_ISVTX (also called the sticky bit because it
causes the text of an executable to remain in memory after use) set, is a multiplexed
character file. Special files are created and deleted in /dev as needed to support multiple
ports connected to that adapter. For example, a serial adapter that supports multiple
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terminals would need to be a multiplexed character file.  A multiplexed device driver contains
an additional xyzmpx entry point. A pseudo-TTY (PTY) is an example of a multiplexed
character device.

Device Driver Configuration
When a version of a device driver is written, to test the driver you need to create and load
the driver’s object files into the kernel. Sample code in this section, shown in several parts,
shows the basic steps of compiling, linking, loading, and testing a pseudo-driver.

Assume that the device special file is /dev/xyz. The device driver’s object files are usually
kept in the directory /usr/lib/drivers, but for this simple example, the object file xyz is kept
in the current directory. You can give a driver’s object file any name permitted within an AIX
file system.

To configure a device driver object file ./xyx into the AIX kernel, a user program with root
user authority, here written in C, extends the kernel:

struct cfg_load cfg;
cfg.path = ”./xyz”;
sysconfig(SYS_KLOAD, &cfg, sizeof(cfg)):

Continuing the sample code, the configuring program needs to pick major and minor
numbers that are not already in use:

majorno = 99;       /* To avoid ODM for now */
minorno = 0;
device_number = makedev(majorno, minorno); /* see sysmacros.h */

A program that configures a driver into the kernel does not really just guess which major and
minor numbers to use. Associated with the Object Data Manager (ODM) are user routines
for determining what numbers to use and for allocating the numbers. Use of ODM is
described later, but major number 99 is picked in the example just as an illustration. Calling
makedev combines the major number and the minor number into one integer, the device
number.

A configuring program usually creates the device special file to be associated with the
device:

mknod (”/dev/xyz”, 0666 | _S_IFCHR, device_number);

Now, the configuring program invokes the device driver’s configure entry point:

struct cfg_dd xyzcfg;
xyzcfg.kmid = cfg.kmid; /* kernel module ID from sysconfig */
xyzcfg.devno = device_number;
xyzcfg.cmd = CFG_INIT;
sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg));

Control now passes to the default entry point for the device driver module. When linking the
device driver routines object file, the entry point specified should be the symbolic name of
the configuration entry point, in this case xyzconfig. A more complete example is shown
in the configuration program in “Sample Device Driver” on page 1-14.

STREAMS device drivers are configured into the kernel by invoking the strload and
str_install commands after editing the /etc/pse.cfg file. The strload command extends the
kernel by loading the Portable STREAMS Environment (pse) kernel extension. The
str_install command extends the kernel by issuing a series of calls to sysconfig as
indicated by entries in the file /etc/pse.cfg. For more information about configuring
STREAMS modules and drivers into the AIX kernel, see “STREAMS” in AIX Version 4.1
Communications Programming Concepts.
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Object Data Manager (ODM) Database
Many UNIX systems have ASCII stanza files that are edited as part of configuring a driver
into the kernel. For example, in some UNIX  systems you add stanzas to a file such as
/etc/system or /etc/master. In AIX, such stanza files are kept in a directory, /etc/objrepos,
called the ODM database. In AIX, you do not directly modify the files in the ODM database,
but instead you call ODM routines, or execute ODM commands to modify the ODM
database. The environment variable ODMDIR specifies which directory the ODM routines
reference.

The files in an ODM database are indexed ASCII files called ODM object classes. Object
classes can be thought of as tables where each row is an object and each column is a field
within each object. For example, in the file CuAt, there is an object with name tok0 that has
attribute dma_lvl and value 0x5. This object says the Token Ring card associated with
/dev/tok0  has DMA level 5.

The following object classes are significant for device drivers:

PdDv Predefined (supported) devices. (Not actually installed on the system).

PdAt Predefined attributes of the predefined devices

PdCn Predefined connections/dependencies

CuDv Customized (defined and/or available) devices

CuAt Customized attributes of system and customized devices

CuDep Customized dependencies, which devices/subsystems require which others

CuDvDr Customized device driver resources. For example, ensures unique major
numbers.

CuVPD Customized vital product data (for Micro Channel adapters)

Config_Rules List of configuration methods for cfgmgr command to execute product
inventory LPP history.

A device method is an executable program, usually written in C, that modifies an ODM
object class associated with a device. A device method is invoked by a user with root user
authority, or when the command cfgmgr is called by rc.boot in RAM disk when the computer
system is started.

The following types of device methods should be provided for a device driver. These
methods are usually kept in the directory /usr/lib/methods.

• Define method (causes device to be defined)

A define method’s main task is to retrieve device data from PdDv in ODM and create a
CuDv object. Also, it ensures that a parent device exists in the CuDv object.

• Configure method (causes device to be available)

A configure method should perform the following steps:

a. Display LED value on system LED panel

b. Verify that a parent device is available (in ODM)

c. Verify that a device is present

d. Invoke the busresolve system call to get an interrupt level assigned to the device.

e. Extend the kernel by calling sysconfig.



1-10 AIX Version 4.1 Writing a Device Driver

f. Generate major and minor numbers and create a special file entry in /dev.

g. Build a device dependent structure (DDS).

h. Invoke the device driver’s config entry point by calling sysconfig and passing it the
DDS.

i. Downloading any microcode needed by the adapter.

j. Updating CuDv with Vital Product Data and making the device available.

In addition to the define method and the configure method,  other methods (for example,
undefine, unconfigure, start, stop, and change methods) may also be needed.

For more information on configuration methods, see Chapter 6, “Device Driver
Configuration” in this book or “Object Data Manager (ODM)” in AIX Version 4.1 General
Programming Concepts Volume 1: Writing Programs.

Device Driver Entry Points
We now consider how control passes from a user program to a device driver entry point
associated with the system call that the user program invoked. As shown in the Device
Switch Table figure, on page 1-4, there are up to eleven entry points listed in the device
switch table for a particular driver: open, close, read, write, ioctl, strategy, select, config,
dump, mpx, and revoke. The entry point, “print,” is not used. Even though the strategy and
dump driver routines have entry points in the device switch table, they cannot be invoked by
a system call in a user program.

Those routines which can be invoked from a system call in a user program, whose entry
points are listed in the device switch table, are collectively known as the device head, and
are said to perform the device head role within the driver. These routines are expected to
return control to the user program that invoked them once their task is complete. Even
though these routines are placed in the same object module, they rarely interact with each
other (for example, they don’t call each other). These routines merely share resources such
as kernel data structures and the device itself. Like any program, a device driver can define
other routines as needed, routines that may be invoked by any other routine in the driver.

For information on how to write each routine associated with an entry point in the device
switch table, please refer to a complete list of such routines “Device Driver Operations” in
AIX Version 4.1 Technical Reference, Volume 5: Kernel and Subsystems. The following
discussion focuses on routines common to most drivers.

Note that a routine’s entry point is customarily labeled by prefixing a routine’s function with
some device-specific abbreviation based on the device special file name. For example, the
entry point associated with a routine that opens a terminal device is labeled, ttyopen, and
one that closes the device is, ttyclose. But, one is free to label entry points with any symbol
that a compiler and linker will accept.

xyzconfig Entry Point
A device driver’s configuration entry point is called when a program directs the kernel loader
to configure the device driver’s object file into the kernel. The configuration entry point is
also called when the device driver is being removed from the kernel or when certain data is
queried from the device.

Below are the commands one may pass to the sysconfig system call:

• CFG_INIT
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In this case, the tasks that the configuration routine might perform are such things as,
placing entry points to other routines into the switch table by invoking devswadd, or
initializing and allocating kernel data structures associated with device driver, or
initializing the adapter, or downloading microcode to the card attached to the device.

Also, the sysconfig system call usually passes a Device Dependent Structure (DDS) to
the configuration routine when initializing the device. One defines the DDS in whatever
fashion as is necessary for the driver. For example, a serial device driver might require
the DDS to contain initial values for baud rate, bits per character, parity bit settings, and
so on.

• CFG_TERM

In this case, the routine checks for any outstanding open file descriptors and releases
any associated resources.

• CFG_QVPD

In this case, the routine returns Vital Product Data from the card attached to the device.

xyzopen and xyzclose Entry Points
These routines usually perform the following functions:

• Allocate or free resources for this device instance

This is often where data structures are allocated or freed from the kernel heap.

This is often where the bottom half is pinned or unpinned, and this is where interrupt
handlers are often registered for use by the kernel, or removed from use by the kernel.

• Update use counts and semaphores if exclusive access required

The xyzopen routine is invoked by open or creat system calls issued from a user program,
or is invoked from an fp_open or fp_opendev kernel service call issued from a kernel
extension.

The xyzclose routine is invoked by the close system call issued from a user program, or is
invoked from the fp_close kernel service call issued from a kernel extension.

xyzread Entry Point
This routine usually does the following:

• Returns a buffer of whatever data was collected from the device (via the device driver’s
interrupt handler)

A call to the read system call from a character device amounts to transferring data from a
kernel buffer that had been populated by this device’s interrupt handler to a buffer
supplied by the user (which is usually outside that user’s data segment)

• From a block device, initiates block I/O requests via the uphysio kernel service

This is referred to as raw access since no kernel buffers are being used for reading.

• From a streams device, causes the stream head or module to invoke the device driver’s
xyzput entry point

Depending on how the device special file was opened, the xyzread routine usually puts the
calling process to sleep until the data requested is available.

The xyzread routine is invoked by the read system call issued from a user program, or is
invoked by the fp_read kernel service call issued from a kernel extension.
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xyzwrite Entry Point
This routine usually does the following:

• Outputs data to a block device

An explicit write to a block device, one not using the xyzstrategy routine, is raw access.
This initiates block I/O requests via the uphysio kernel service

• Outputs data to a character device

A write to a character device transfers data from a buffer supplied by the user, which is
usually out of that user’s data segment, pointed to by the uio structure, to any buffer
needed by the device adapter, usually one character at a time.

• Outputs data to a STREAMS device

A write to a STREAMS device causes the stream head (or some module in the Stream)
to invoke the streams driver’s xyzwput routine.

The xyzwrite routine is invoked by the write system call issued from a user program, or is
invoked by the fp_write kernel service routine issued from a kernel extension.

xyzstrategy Entry Point
This routine usually schedules read or write requests of a block device. Such requests are
added to a queue of pending I/O requests for the device. The queue can be sorted to
optimize device access; for example, one may wish to have disk blocks organized so that
any that are within the same cylinder (under the drive’s read/write head) are input or output
in one operation.

The buffer supplied to the xyzstrategy routine must be pinned in RAM, because the actual
I/O with the buffer is asynchronous (it may happen after the routine exits).

This routine calls the iodone kernel service once it’s finished.

The xyzstrategy routine is invoked indirectly by the following:

• The uphysio kernel service.

• The Logical Volume Manager (LVM).

• The Virtual Memory Manager (VMM). (For example, for handling page faults.)

More information about use of strategy routines for block devices, see Chapter 7, “Block
Device Drivers.”

xyzioctl Entry Point
This routine usually performs functions that are not done by any of the other routines
mentioned up to now. Usually, the xyzioctl routine modifies, or inspects the state of the
attached device, and reports any results back to the calling program. For example, a
terminal driver would have its ttyioctl routine enable the calling program to modify baud
rate, bits per character, and so on.

This routine need not be synchronous since a device may not permit immediate action. For
example, a program that calls ioctl(CIOSTART) on a LAN adapter requires a subsequent
ioctl(CIOGETSTAT) to determine whether the first ioctl call is complete.

Not every driver has this entry point, but if this routine is present, it must support the
IOCINFO command option which tells xyzioctl to return a structure that describes the
attached device.

The xyzioctl routine is invoked by the ioctl system call issued from a user program, or is
invoked by the fp_ioctl kernel service call issued by a kernel extension.
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STREAMS Entry Points
A STREAMS driver may include routines invoked directly from the device switch table.
However, a STREAMS driver usually handles all processing by using a write-side
(downstream) put routine, and one or two optional service routines. Like any device driver, a
STREAMS driver also has an interrupt handler which performs functions similar to those
performed by a read-side (upstream) put routine of a STREAMS module. These
relationships are shown in the STREAMS Driver Entry Points figure.

STREAMS Driver Entry Points

STREAMS
Driver

User Program User Program User Program

open(/dev/xyz0) open(/dev/xyz1)
write()
putmsg()

open(/dev/xyz2)
ioctl()
putmsg()

read()
getmsg()

user mode

kernel mode

xyzopen()

xyzclose()
xyzwput()
xyzwsrv()

xyzrsrv()

xyzintr()

stream 
heads

STREAMS
module

write-side
(downstream)

read-side
(upstream)

abcwput() abcrput()
abcwsrv() abcrsrv()

abcwput() abcrput()
abcwsrv() abcrsrv()

abcwput() abcrput()
abcwsrv() abcrsrv()

abcclose() abcopen()
pushed
 into Stream

For more information on how to write a STREAMS module or device driver, see UNIX
SYSTEM V, Release 4, Programmer’s Guide: STREAMS.

xyzwput Entry Point
The write-side put routine receives messages from the stream head or STREAMS module
upstream. The stream head converts write and ioctl system calls, issued from the user
program, into messages, and then sends the messages downstream by invoking the
write-side put routine of whatever STREAMS module or driver is downstream. The stream
head handles the read system call issued from the program; the STREAMS driver does not.

This routine is invoked by the stream head or STREAMS module upstream from the driver.

A STREAMS driver does not have a read-side put routine. The interrupt handler assumes
the role of receiving data from the device’s adapter.

xyzwsrv, xyzrsrv Entry Points
A STREAMS driver can optionally support either a write-side or read-side service routine,
neither, or both.

When a driver’s write-side put routine determines that it must defer writing data to the device
(flow control), it must place the data on a write-side queue. A kernel process, which is part of
the Portable STREAMS Environment (PSE), eventually invokes the driver’s write-side
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service routine, which checks the write-side queue and attempts to write the data to the
device, or enqueues the data on the write-side queue so it can make another attempt later.

Similarly, the device driver’s interrupt handler may place a buffer of data coming in from the
device on a read-side queue.  The PSE kernel process eventually invokes the driver’s
read-side service routine, which checks the read-side queue and then processes the data.
Once the processing is complete, the read-side service routine invokes the read-side put
routine of the STREAMS module upstream.

The data to be handled by a service routine is placed on a queue, as follows:

• The write-side put routine must call putq to place messages on a write-side service
queue, so that invoking the xyzwsrv routine later will process that message.

• The interrupt handler must call putq to place messages on a read-side service queue for
deferred processing by the xyzrsrv routine.

• A service routine gets messages off its own queue by calling getq.

Service routines are invoked by the STREAMS scheduler, implemented within a kernel
process in AIX. The STREAMS scheduler is part of the PSE (Portable STREAMS
Environment) kernel extension.

Sample Device Driver
For greatest simplicity, consider a pseudo-driver (one having no associated device), whose
routines are minimal and yet demonstrate an outline of what a device head looks like. As
with any sample code in this book, the following warning applies.

Warning: The source code examples provided by IBM  are only intended to assist in the
development of a working software program. The source code examples may not function
as written:additional code is required. In addition, the source code examples may not
compile and may not bind successfully as written. International Business Machines
corporation provides the source code examples, both individually and as one or more
groups, “AS IS” without warranty of any kind, either expressed or implied, including, but not
limited to the implied warranties of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the source code examples, both individually
and as one or more groups is with you. Should any part of the source code examples prove
defective, you (and not IBM  or an authorized RISC System/6000 Workstation dealer)
assume the entire cost of all necessary servicing, repair, or correction. IBM does not warrant
that the contents of the source code examples, individually or as one or more groups, will
meet your requirements or that the source code examples are error-free. IBM may make
improvements and/or changes in the source code examples at any time. Changes may be
made periodically to the information in the source code examples; these changes may be
reported, for the sample device drivers included herein, in new editions of the examples.
References in the source code examples to IBM or non-IBM products, programs, or services
shall not be viewed as an endorsement of any kind and references do not imply that  IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM licensed program in the source code examples is not intended to state or imply that only
IBM’s licensed program may be used. Any functionally equivalent program may be used.

Files for Sample XYZ Device Driver
The sample device driver has the following files located in a user directory:

aprogram.c User program’s source: opens, reads, writes to device

makefile Command file that directs the make command
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xyz.c Source code for the device driver

xyz_cfg.c Source code for the configure program

makefile for Sample XYZ Device Driver
This file, makefile, contains commands for building the sample XYZ device driver:

# Once this is done, have root user run xyz_cfg –q to query the kernel
# to see that the driver is not loaded.  Then run xyz_cfg –l to load it.
# Check again with xyz_cfg –q; if OK, then have non–root user run “aprogram.”
# Then clean up by running xyz_cfg –u and verify absence of /dev/xyz.

#needed to get kernel services like devswadd()
KSYSLIST=/lib/kernex.exp

# needed for trace macro (containing a system call)
SYSLIST=/lib/syscalls.exp

all: aprogram xyz xyz_cfg
 
# import the kernel service calls and make xyzconfig() the entry point
xyz: xyz.o
     ld –e xyzconfig –o xyz –bI:$(KSYSLIST) –bI:$(SYSLIST) xyz.o

# It is necessary to use separate compile and link steps to avoid picking up
# routines like printf from libc.a. There is a kernel printf().
# _KERNEL needed to get trace macro, others determined by header files
xyz.o: xyz.c
     cc –c –D_ALL_SOURCE –D_POSIX_SOURCE –D_KERNEL xyz.c

# this is to create the driver’s configure method that extends the kernel
xyz_cfg: xyz_cfg.c
     cc –o xyz_cfg xyz_cfg.c

aprogram: aprogram.c
     cc –o aprogram aprogram.c

Configuration Program for Sample XYZ Device Driver
This configuration program, xyz_cfg.c,  is not recommended for configuring drivers in AIX.
It avoids the use of ODM routines for simplicity.

/* 
 * FUNCTION: Configure/Unconfigure program for bare bones driver, xyz
 *   Normally, one has a configure program (run at boot time)
 *   and then a separate unconfigure program (run interactively).
 *   Run “xyz_cfg” to see parameters needed.
*/

#include <stdio.h>           /* for printf() */
#include <unistd.h>          /* for getopt() */
#include <stdlib.h>          /* for exit() */
#include <sys/types.h>       /* for dev_t and other declarations */
#include <sys/errno.h>       /* for perror() */
#include <sys/sysmacros.h>   /* for makedev() */
#include <sys/sysconfig.h>   /* for sysconfig() */
#include <sys/device.h>      /* for CFG_INIT & other flags */
#include <sys/mode.h>        /* for mknod() */

void main(int argc, char *argv[])
{
  struct cfg_load cfg;          /* to load kernel extension */
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  struct cfg_dd xyzcfg;          /* to invoke xyzconfig() */
  int majorno, minorno;
  dev_t device_number;
  int     ch;               /* flag char returned by getopt */

  extern  int     optind;         /* for getopt function */
  extern  char    *optarg;        /* for getopt function */

     /* normally call ODM routines to get values for these */
  majorno = 99;
  minorno = 0;
  device_number = makedev(majorno, minorno);

             /* parse command line */

  if(argc <= 1)
  { printf(“You must give an argument.\n”);
    printf(“arguments to xyz_cfg are:\n”);
    printf(“\t–l to load the driver and invoke xyzconfig() \n”);
    printf(“\t–u to invoke xyzconfig() and unload the driver \n”);
    printf(“\t–q to query the status of the kernel extension\n”);
  }

  while ((ch = getopt(argc,argv,”luq”)) != EOF)
  { switch (ch)
    { case ‘l’:  /* load the driver––assume is first time (shouldn’t!) */
     cfg.path = “./xyz”;     /* path is local––usually /etc/drivers */
     if (sysconfig(SYS_KLOAD, &cfg, sizeof(cfg)) == –1)
     { perror(“sysconfig SYS_KLOAD FAILED”);
       exit(1);
     }
     xyzcfg.kmid = cfg.kmid; /* kernel module ID from SYS_KLOAD */
     xyzcfg.devno = device_number;
     xyzcfg.cmd = CFG_INIT;
     if (sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg)) == –1)
     { perror(“sysconfig SYS_CFGDD FAILED”);
       exit(1);
        }

     /* make /dev entry in honor of device switch table entry */
     if (mknod(“/dev/xyz”, 0666 | _S_IFCHR, device_number) == –1)
     { perror(“mknod FAILED”);
       exit(1);
        }

     break;

      case ‘u’:     /* unload the driver */

     /* the kmid lost once this exits, so we requery the information */
     cfg.path = “./xyz”;
     if (sysconfig(SYS_QUERYLOAD, &cfg, sizeof(cfg)) == –1)
     { perror(“sysconfig SYS_QUERYLOAD FAILED”);
       exit(1);
     }

     xyzcfg.kmid = cfg.kmid; /* kernel module ID from SYS_QUERYLOAD */
     xyzcfg.devno = device_number;
     xyzcfg.cmd = CFG_TERM;
     if (sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg)) == –1)
     { perror(“sysconfig SYS_CFGDD FAILED”);
       exit(1);
     }

     /* remove /dev entry...normally would use ODM’s reldevno() */
     unlink(“/dev/xyz”);
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     if (sysconfig(SYS_KULOAD, &cfg, sizeof(cfg)) == –1)
     { perror(“sysconfig SYS_KULOAD FAILED”);
       exit(1);
     }
     break;

      case ‘q’:     /* query the status of the system call */
     cfg.path = “./xyz”;
     if (sysconfig(SYS_QUERYLOAD, &cfg, sizeof(cfg)) == –1)
     { perror(“sysconfig SYS_QUERYLOAD FAILED”);
       exit(3);
     }
     printf(“The kernel module ID is %d\n”, cfg.kmid);

     xyzcfg.kmid = cfg.kmid; /* kernel module ID from SYS_QUERYLOAD */
     xyzcfg.devno = device_number;
     xyzcfg.cmd = CFG_QVPD;
     if (sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg)) == –1)
     { perror(“sysconfig SYS_CFGDD FAILED”);
       exit(1);
     }
     break;

      default:
        printf(“arguments to xyz_cfg are:\n”);
        printf(“\t–l to load the driver and invoke xyzconfig() \n”);
        printf(“\t–u to invoke xyzconfig() and unload the driver \n”);
        printf(“\t–q to query the status of the kernel extension\n”);
    } /* end switch on ch */
  } /* end while getopt */
  exit(0);
}

Source Code for Sample XYZ Device Driver
This file, xyz.c, contains source code for the sample device driver:

#include <sys/types.h>       /* for dev_t and other types */
#include <sys/errno.h>       /* for errno declarations */
#include <sys/sysconfig.h>   /* for sysconfig() */
#include <sys/device.h>      /* for devsw */
#include <sys/trchkid.h>     /* for trace hook macros */

/***************************************************************
  BARE BONES DRIVER

This shows the format of a minimal set of entry points for a
pseudo–driver.
***************************************************************/

/************** xyzopen **********************/
int xyzopen(dev_t devno, ulong devflag, chan_t chan, int ext)
{
  TRCHKL5T(HKWD_USER1, 0x7, devno, devflag, chan, ext);
  return(0);
}

/************** xyzclose **********************/
int xyzclose(dev_t devno, chan_t chan)
{
  TRCHKL3T(HKWD_USER1, 0x8, devno, chan);
  return(0);
}
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/************** xyzread **********************/
int xyzread(dev_t devno, struct uio *uiop, chan_t chan, int ext)
{
  TRCHKL5T(HKWD_USER1, 0x9, devno, uiop, chan, ext);
  return(0);
}

/************** xyzwrite **********************/
int xyzwrite(dev_t devno, struct uio *uiop, chan_t chan, int ext)
{
  TRCHKL5T(HKWD_USER1, 0x0a, devno, uiop, chan, ext);
  return(0);
}
/************** xyzconfig **********************/
int xyzconfig(dev_t devno, int cmd, struct uio *uiop)
{ struct devsw dsw_struct;
  extern int nodev();
  int return_code;

  /* trace macro to print received parameters in hex */
  TRCHKL4T(HKWD_USER1, 0x1, devno, cmd, uiop);  /* 0x01–tracept label */

  switch(cmd)
  { case CFG_INIT:
      dsw_struct.d_open     = xyzopen;
      dsw_struct.d_close    = xyzclose;
      dsw_struct.d_read     = xyzread;
      dsw_struct.d_write    = xyzwrite;
      dsw_struct.d_ioctl    = nodev;
      dsw_struct.d_strategy = nodev;
      dsw_struct.d_ttys     = NULL;
      dsw_struct.d_select   = nodev;
      dsw_struct.d_config   = xyzconfig;
      dsw_struct.d_print    = nodev;
      dsw_struct.d_dump     = nodev;
      dsw_struct.d_mpx      = nodev;
      dsw_struct.d_revoke   = nodev;
      dsw_struct.d_dsdptr   = NULL;
      dsw_struct.d_opts     = NULL;

      if((return_code = devswadd(devno, &dsw_struct)) != 0)
      { TRCHKL3T(HKWD_USER1, 0x2, devno, dsw_struct);
     return(return_code);
      }

      /* entry points now in device switch table */
      break;

    case CFG_TERM:
      TRCHKL1T(HKWD_USER1, 0x3);
      if((return_code = devswdel(devno)) != 0)
      { TRCHKL2T(HKWD_USER1, 0x4, devno);
        return(return_code);
      }

      break;

    case CFG_QVPD:
      TRCHKL1T(HKWD_USER1, 0x5);/* would normally handle this case too */
      break;

    default:
      TRCHKL1T(HKWD_USER1, 0x6);
      return(EINVAL);
  } /* end switch(cmd) */
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  return(0);
}

User Program to Invoke Sample XYZ Device Driver
This file, aprogram.c, contains sample user code to invoke the sample device driver:

#include <stdio.h>        /* for printf() */
#include <fcntl.h>        /* for open(), close() */
#include <unistd.h>       /* for read(), write() */
#include <sys/errno.h>    /* for perror() */

int fd;          /* file descriptor */
char buf[10];    /* read/write buffer */

void main()
{
  printf(“buf pointer: 0x%x\n”, buf);
  if((fd = open(“/dev/xyz”, O_RDWR)) == –1)
  { perror(“open /dev/xyz FAILED”);
    exit(1);
  }

  if(read(fd, buf, sizeof(buf)) == –1)
  { perror(“read FAILED”);
    exit(1);
  }

  if(write(fd, buf, sizeof(buf)) == –1)
  { perror(“write FAILED”);
    exit(1);
  }

  if(close(fd) == –1)
  { perror(“close FAILED”);
    exit(1);
  }
}
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Running the Sample XYZ Device Driver
The lines prefixed by a # were commands executed as a user with root authority in a
window. The lines prefixed by a > were commands executed as a staff user in another
window. The order of the commands is as listed.

# trace –j’010’ –l –s –a &
[1]     21971
# xyz_cfg –q
The kernel module ID is 0
sysconfig SYS_CFGDD FAILED: No such device
[1] + 21971      Done                    trace –j’010’ –l –s –a &
# xyz_cfg –l
# xyz_cfg –q
The kernel module ID is 21790464
     > $ ls /dev/xyz
     > /dev/xyz
# chmod 666 /dev/xyz 
     > $ aprogram
     > buf pointer: 0x200516c0
# trcstop
# trcrpt –O’exec=y’ –O’pid=n’ –O’svc=y’ –O’timestamp=1’ > $HOME/frog
     > $ ls /dev/xyz
     > /dev/xyz
# xyz_cfg –u
# xyz_cfg –q
The kernel module ID is 0
sysconfig SYS_CFGDD FAILED: No such device
# 
     > $ ls /dev/xyz
     > ls: 0653–341 The file /dev/xyz does not exist.

Trace Output for Sample XYZ Device Driver
Here is the output of trcrpt (abbreviated for space):

The hook data indicates calls to xyzconfig (load and query), open, read, write, and close.

ID  PROCESS NAME   I SYSTEM CALL     ELAPSED KERNEL  INTERRUPT

001 trace                           0.000000 TRACE ON channel 0
010 trace                          19.362228 UNDEFINED TRACE ID idx 0x21dc traceid 0010
        hookword 10E0000 type 0E
        hookdata 0000 00000001 00630000 00000001 2FF97F1C 00000000 
010 trace                          25.716153 UNDEFINED TRACE ID idx 0x2230 traceid 0010
        hookword 10E0000 type 0E
        hookdata 0000 00000001 00630000 00000003 2FF97F1C 00000000 
010 trace                          25.716159 UNDEFINED TRACE ID idx 0x224c traceid 0010
        hookword 10A0000 type 0A
        hookdata 0000 00000005 
010 trace                          99.695506 UNDEFINED TRACE ID idx 0x24e8 traceid 0010
        hookword 10E0000 type 0E
        hookdata 0000 00000007 00630000 00000003 00000000 00000000 
010 trace                          99.706120 UNDEFINED TRACE ID idx 0x2504 traceid 0010
        hookword 10E0000 type 0E
        hookdata 0000 00000009 00630000 2FF97DC0 00000000 00000000 
010 trace                          99.706318 UNDEFINED TRACE ID idx 0x2520 traceid 0010
        hookword 10E0000 type 0E
        hookdata 0000 0000000A 00630000 2FF97DC0 00000000 00000000 
010 trace                          99.706446 UNDEFINED TRACE ID idx 0x253c traceid 0010
        hookword 10E0000 type 0E
        hookdata 0000 00000008 00630000 00000000 00000000 00000000 
002 trace                         109.684978 TRACE OFF channel 0
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Routines on the Interrupt Side
When one of the system’s processors receives an external interrupt, an AIX processor
interrupt handler, for that particular processor interrupt, begins execution. This portion of the
AIX kernel determines which device interrupt handler, or which collection of handlers, to
invoke. For more information on interrupt processing, see Chapter 3, “Interrupts.”

A card on the system bus that serves as an adapter between the system and the device
may generate an interrupt on the bus. Its device driver will need to configure a routine to
handle that interrupt, and may wish to add other routines to handle off-level interrupts, which
are scheduled by the device interrupt handler as a way to defer interrupt processing.

xyzintr Entry Point
This routine is configured into the kernel by a call to the i_init kernel service. The xyzopen
routine typically calls i_init, and pins the bottom half of the device driver. Because routines
executing on the interrupt side cannot afford to be preempted by demand paging, they are
placed within the driver’s bottom half (they are pinned in RAM).

This routine usually does the following:

• Determines the slot of the card that generated the device interrupt.

This routine may also have to determine whether to process the interrupt. The interrupt
level can be shared, so the interrupt may be intended for another device interrupt
handler.

• Disables some other device interrupts to prevent this routine from being reentered if
another interrupt for the same device driver is received.

This technique of avoiding concurrent execution can fail on computers with multiple
processors.

Because interrupt handlers have to address concurrency by serializing interrupt
processing in some way, the handler’s latency (the time between when control of the
system processor is assumed and when control can be relinquished) must be minimized
in order to maximize the system’s ability to respond to other device interrupts.

• Transfers data from the device into a buffer, or notifies a user program that something has
happened

• Schedules an off-level interrupt handler to complete processing of input data

This can be done to minimize the handler’s latency. As an alternative, the driver can
depend on kernel processes to handle received data.

There are some special concerns that apply to routines on the interrupt side:

• Many kernel services can only be invoked from routines on the call side.

• These routines cannot go to sleep, though they can post events to (waken) routines on
the call side.

• These routines cannot obtain or release locks.

Routines on the call side that are in the bottom half of a driver can adjust locks, provided
the events or lockwords are also pinned in RAM.

• An interrupt handler is called at the priority registered when the handler is configured into
the kernel via the i_init kernel service. The handler’s execution can only be preempted by
interrupts with a higher priority.
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• Interrupt handlers have volatile data (local variables) in a pinned stack that is less than 4K
bytes in size.

Note: Because xmalloc cannot execute on the interrupt side, any non-volatile buffers
that an interrupt handler needs must be previously allocated on the call side.

• Routines that handle off-level interrupts run at a less favored interrupt priority.

Pinning Device Driver Object Files
Sometimes a driver routine (such as an interrupt handler) and any associated data is
required to be kept in RAM. This requirement might exist to avoid handling a page fault so
the routine can execute within a fixed period of time, or to avoid receiving a page fault while
interrupts are disabled.

Typically, a device driver writer compiles or links all routine and data definitions into one
loadable file (the bottom half of the device driver), because the pincode kernel service
marks each page of the loaded object file as being required to be kept in RAM. The method
for identifying the object file is that, a pointer to a routine within the object file is an input
value for the pincode kernel service.

Routines and data that can be subject to page replacement are typically collected into
another loadable object (the top half of the device driver).

Routines that wish to allocate buffers from the kernel heap (by calling the xmalloc kernel
service) must take care which heap the allocation is from.  Routines in the bottom half
allocate data from the kernel’s pinned heap; and routines in the top half allocate data from
either heap. For more information on this, see Chapter 4, “Memory Management.”

Any routine in the bottom half that invokes a routine in the top half, or refers to data in the
top half, negates any purpose for having been pinned in RAM. The routine may
(intermittently) cause a page fault.

Typically, a device driver’s open routine pins the  device driver’s bottom half when the device
special file is first opened. The driver’s close routine checks for any outstanding open calls
on the file and then calls the unpincode kernel service.

Driving a SCSI Attached Device
A SCSI device driver converts I/O requests into SCSI commands, and passes these
commands to the SCSI adapter driver provided in AIX. Therefore, a SCSI device driver only
consists of routines that execute on the call side. The SCSI device driver passes commands
to the adapter driver by direct invocation of its routines; therefore, a SCSI device driver must
be integrated with the existing SCSI subsystem. The SCSI subsystem is illustrated in the
SCSI Subsystem figure.

The generic SCSI device head associated with the special file /dev/scsi# (where # is 0,
1, 2, or some other number) permits a user program with root user authority to send SCSI
commands through the associated SCSI adapter.

For more information on how to drive a SCSI attached device, see Chapter 8, “Integrating a
SCSI Device Driver into the SCSI Subsystem.”
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Other Topics
It may be necessary to integrate a device driver into some existing subsystem in AIX.  For
example, you may need to integrate a driver into one of the following subsystems:

• TTY subsystem

See Chapter 10, “STREAMS-Based TTY Subsystem Interface,” for more information on
supporting terminal users through a serial device.

• Graphics device subsystem

See Chapter 11, “Implementing Graphical Input and 2D Graphics Device Drivers,” for
more information on supporting a pointing device, graphics monitor, keyboard, or other
graphics related device.

• TCP/IP

See Chapter 12, “Implementing a Network Device Driver,” for more information on
supporting the TCP/IP socket interface or the Transport Layer Interface (TLI) through a
network (Ethernet, Token Ring, or other) adapter.

• Socket Interface to your own protocol

See Chapter 13, “Network Interfaces and Protocols,” for more information on
implementing a protocol that is an alternative to TCP/IP, which uses a network adapter
driver provided by AIX.

Once a device driver is written and configured into the kernel, it is necessary to test and
debug the driver routines. The example driver given in this chapter demonstrates the use of
trace macros, but you may wish to incorporate error logging capability into a driver so that a
system administrator can be notified of any irregularities.

Furthermore, defects in a driver could cause the system to halt after having copied an image
of the kernel (called a kernel dump) to a logical volume reserved for that purpose. The
kernel dump can be inspected with the crash utility.  It may also be necessary to debug a
driver using the kernel debugger, which comes with AIX and is configured into the kernel
with the bosboot command.  For more information on the use of such tools, see Chapter
14, “Debugging Tools.” 

Once a driver is ready for delivery, you may wish to archive the resulting binary and
character files into a format that the installp command can process. For information on
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packaging files into installp format see “Software Product Packaging” in AIX Version 4.1
General Programming Concepts Volume 1: Writing Programs.

In addition, you may wish to add an entry in the SMIT interface to enable users to install,
configure, or remove your device in the same way that is done with devices supported by
AIX. For more information on adding your own SMIT dialogs see “System Management
Interface Tool (SMIT) for Programmers” in AIX Version 4.1 General Programming Concepts
Volume 1: Writing Programs.
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Chapter 2. Device I/O

Even though a driver can perform many functions, one usually writes a driver to output data
to a device or demand data from a device; in other words drivers usually perform device I/O.
A driver may have to read from, or write to, registers on a card serving as an adapter
between an I/O bus and a device connected to the card, or the driver may have to set up
the means for data to be transferred in some other way.

Address Translation
There are two basic types of address translation implemented on system processors that
AIX supports:

• Block address translation (on PowerPC only)

• Segment address translation

The various kinds of address translation are diagramed in the Address Translation figure.
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Block Address Translation
Block address translation (BAT) is a feature of the PowerPC architecture that is an
alternative to page address translation. Pages have a fixed size, but blocks can be from 128
KB to 256 MB in size, although on the PowerPC 601 RISC Microprocessor, BAT areas can
be no larger than 8MB. Whether this type of address translation is implemented in AIX
depends on the system PowerPC processor. AIX does not use the BAT tables of the
PowerPC 601 RISC Microprocessor, but instead uses memory-forced I/O, which is
described later. For more information on block address translation, see PowerPC
Architecture (order number SR28-5124).

Segment Address Translation
All three processor architectures that AIX supports, POWER, POWER2, and PowerPC, can
translate byte addresses by using sixteen segment registers. The contents of these
registers, together with that of some other processor registers (such as the general purpose
registers, instruction register, and machine state register) make up the context in which an
instruction executes. Changing the contents of some of these registers (having saved the
former values somewhere) is a context switch. A device driver’s call side routines typically
execute in the context of a process, and its interrupt side routines execute in the context of
an interrupt handler. The Segmented Virtual Memory figure shows how virtual memory
consists of segments accessed by instructions executing in various contexts.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Segmented Virtual Memory

the kernel
segment

an I/O segment

context A
context B

other context

virtual
memory
segments



Device I/O 2-3

In AIX, instructions typically execute in a context whose segment registers contain the
following:

Segment register 0 Kernel segment identifier (ID) (Shared by all)
Segment register 1 Text segment ID (Where instructions are fetched from)
Segment register 2 Data segment ID (Not shared by others)
Segment register 13 Shared text segment ID (For shared libraries)
Segment register 15 I/O segment ID (For I/O. Often used, but not required.)

For more details, see “Program Address Space Overview” in the chapter about shared
libraries and shared memory in AIX Version 4.1 General Programming Concepts Volume 1:
Writing Programs.

A segment register contains a segment identifier (segment ID) which determines, among
other things, what kind of address translation is to be performed on addresses within that
segment.

Consider the following kinds of segment address translation:

• Page address translation
• I/O controller interface translation
• Memory forced I/O (PowerPC 601 RISC Microprocessor)

Page address translation is usually performed on an address referenced by an instruction
accessing system RAM. For the POWER and POWER2 architectures, this kind of address
translation is detailed under “Memory Addressing” in the chapter about system processors
in POWERstation and POWERserver Hardware Technical Information-General
Architectures. For the PowerPC architecture, page address translation is detailed in
PowerPC Architecture (SR28-5124).

A segment address is page translated if its corresponding segment register has the highest
order bit clear (zero); otherwise, the address is given to the I/O controller for translation. The
PowerPC 601 RISC Microprocessor has a feature, called memory-forced I/O, that enables
the I/O controller to generate a real address. This address can be used when I/O space is
memory mapped.
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I/O Controller Types
Each processor architecture expects an I/O controller to interface between the system bus
(the one the processors use to access RAM) and an I/O bus. A computer system may have
more than one I/O bus, but each bus has its own I/O controller.

The following table shows processor types, I/O controllers, and I/O bus protocol
combinations that are supported by AIX Version 4.1:

Processor Controller Bus Protocol Address Space for I/O

POWER RS1 IOCC Micro Channel I/O address

POWER RSC IOCC Micro Channel I/O address

POWER RS2 XIO Micro Channel I/O address

PowerPC ASIC Micro Channel I/O address

PowerPC PCIB/MC PCI real address
(memory mapped I/O)

The following list explains some terms used in the preceding table:

• Power RSC is POWER architecture on a single chip
• Power RS2 is POWER2 architected chip
• IOCC is I/O Channel Controller chip
• XIO is Extended IOCC
• ASIC is Application Specific Integrated Circuit chip
• PCIB/MC is Peripheral Component Interconnect (PCI) Bridge/Memory Controller

complex.

The first four configurations, which interface to a Micro Channel bus, are quite similar. I/O
space is accessed by passing an address to an I/O controller for translation; the address is
then an I/O address. In this case, I/O space is mapped to I/O addresses by the I/O
controller. Information about differing implementation details is contained in POWERstation
and POWERserver Hardware Technical Information-General Architectures.

Configurations having a PCIB/MC, which interfaces to a Peripheral Component Interconnect
(PCI) bus, are quite different. The I/O space is part of real address space, meaning that a
memory controller translates real addresses so that certain address ranges access system
RAM, and other address ranges access other system or bus attached devices. In this
sense, I/O space is memory mapped. Different systems may have different address ranges
mapped to different devices. For implementation details, see the hardware technical
reference for the particular system.
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I/O Space on PCI and ISA Systems
On PowerPC systems that do not have a Micro Channel bus, I/O space is memory mapped
by the memory controller. So, I/O space is accessed by generating real addresses in one of
two ways: either through block address translation, or memory-forced I/O (PowerPC 601
RISC Microprocessor only). The figure Controller’s Memory Map (32 bit) shows an example
of how the memory controller maps real addresses to bus addresses.
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Programmed I/O to PCI and ISA Adapters
A routine is said to perform programmed I/O whenever it issues a load or store instruction
with an address mapped to a bus or planar device. One distinguishes programmed I/O,
where a system processor performs the data transfer, from direct memory access (DMA)
where data is transferred by some other means.

For example, to output the value 0x12345678 to some register at offset 0x2f7:

volatile uchar *ioaddr;
struct io_map io_map;
...
ioaddr = iomem_att(&io_map); /* do after io_map initialized */
*(ioaddr + 0x2f7) = 0x12345678;
eieio(); /* ensures I/O instructions complete */
...
iomem_det(ioaddr);

The argument to iomem_att is a pointer to a structure io_map as defined in sys/ioacc.h.
The calling routine provides the size of the address space needed, and a bus ID which
specifies the bus type of region to be mapped. The figure Format of a Bus ID (real address,
32 bit) shows the format of a bus ID. The device driver’s configuration entry point must get a
valid bus ID from its configure method.

reserved
bus type number

bus typeflag

region
0 8 12 16 26 31

Format of a Bus ID (real address, 32 bit)

In this case, the bus type might be IO_ISA. The region might be ISA_IOMEM if I/O is to an
ISA adapter’s registers, or ISA_BUSMEM if I/O is to RAM on an ISA adapter.

A call to iomem_att returns a bus address in io_map. The bus address is to be passed to
iomem_det after the I/O is complete.

There is no exception handling for programmed I/O on systems that do not have Micro
Channel. An I/O exception causes the system to halt.
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Direct Memory Access
A method of transferring data to or from a device without having a system processor issue
load or store instructions is to use direct memory access (DMA),  which relies on capabilities
designed into the DMA controller and the adapter interfacing to the attached device.

There are two types of DMA:

• DMA Master

When an adapter arbitrates for the bus, and is able to transfer data directly by generating
its own bus addresses and transfer lengths, then the transfer is DMA master, and the
card is a DMA master adapter.

• DMA Slave

When an adapter arbitrates for control for the bus, but lacks the ability to generate its
own bus addresses to perform data transfer, so that a third party (a DMA controller)
performs the data transfer, then the transfer is DMA slave, and the card is a DMA slave
adapter.

The steps for performing DMA differ between bus types, though the steps for performing
DMA on ISA are similar to those for PCI. There is currently no DMA support for PCMCIA
adapters.

DMA on POWER and POWER2 Architectures
The RIOS-1 and RIOS-2 architectures are not cache-consistent. Therefore, on these
platforms, memory pages involved in a DMA transfer have to be made inaccessible to the
processor (hidden), and the processor data cache must be flushed accordingly.

The IOCCs on these models are buffered (including the dual-buffered XIO)
implementations, and thus require appropriate buffer flushing and invalidating.

On these platforms, TCE memory is disjoint from system memory and resides logically with
the IOCC. Also, the TCE entries contain reference and change bits that must be
maintained.

DMA slave operations are performed via the TAG Table implementation.

Authority checking is performed using a mask residing in the Channel Status Register for a
DMA channel by checking that mask against the page protect key in the associated TCEs.

DMA on RSC (Single-Chip) Architectures
The RSC architecture is a cache-consistent architecture, therefore page hiding and data
cache flushes aren’t necessary.

The IOCC on this architecture is non-buffered, therefore does not require buffer flushes or
buffer invalidation.

DMA on PowerPC Architectures
The PowerPC architecture is a cache-consistent architecture, therefore page hiding and
data cache flushes aren’t necessary. However, if a DMA operation modifies an instruction
stream, instruction cache management is the responsibility of the application or instigator of
the data transfer.
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DMA Routines for PCI and ISA Adapters
The dio structure, which is defined in sys/dma.h, has many uses by a device driver. It is
used both to pass a list of virtual addresses and lengths of buffers to the d_map_list and
d_map_slave services, and to receive the resulting list of bus addresses (d_map_list only)
for use by the device in the data transfer. Note that for calls to d_map_slave the driver
does not need a dio bus list, since by nature the address generation for slaves is hidden.

Typically, a device driver will provide a dio structure containing only one virtual buffer and
length in the list. Then, if the virtual buffer length spans many pages, the bus address list
would contain multiple entries reflecting the physical locations making up the virtually
contiguous buffer. The driver, however, can provide multiple virtual buffers in the virtual list
which allows it to coalesce many buffer requests into one I/O operation. The device driver is
responsible for allocating the storage for all dio lists that it will need. The driver will need at
least two dio structures, one for passing in the virtual list, and another for accepting the
resulting bus list. The driver can have many dio lists if it plans to have multiple outstanding
I/O commands to its device. The length of each list is dependent on the function of the
device and driver. The virtual list needs as many elements as are planned to be coalesced
into one operation by the device. A formula for estimating how many elements the bus
address list will need is the sum of each of the virtual buffers lengths divided by page size
plus 2. One way to represent this formula is:

sum[i=0 to n] ((vlist[i].length / PSIZE) + 2).

This is to handle a worst case situation, where, for a contiguous virtual buffer spanning
multiple pages, each physical page is discontiguous, and neither the starting or ending
addresses are page-aligned.

If the d_map_list service runs out of space while filling in the dio bus list, then an error,
DMA_DIOFULL, is returned to the device driver and the bytes_done field of the dio virtual
list is set to how many bytes were successfully mapped in the bus list. This byte count is a
multiple of the minxfer field provided to the d_map_list or d_map_slave service. Also, the
resid_iov field of the virtual list is set to the index of the first d_iovec entry representing the
remainder of iovecs that could not be mapped. The device driver then can initiate a partial
transfer on its device and leave the remainder on its device queue, or make another call to
the d_map_list with new dio lists for the remainder, then setup its device for the full
transfer that was originally intended. If the driver chooses not to initiate the partial transfer, it
still must make a call to d_unmap_list to undo the partial mapping.

If d_map_list or d_map_slave encounter an access violation on a page within the virtual
list, then an error, DMA_NOACC, is returned to the device driver, and the bytes_done field
of the dio virtual list is set to the number of bytes that preceded the faulting iovec. Also in
this case, the resid_iov field is set to the index of the d_iovec entry that encountered the
violation. From this information, the driver can determine which virtual buffer contained the
faulting page and fail that request back to the originator. Note that in the DMA_NOACC
case, the bytes_done count is not always a multiple of the minxfer field provided to the
d_map_list or d_map_slave service, and no partial mapping is done. This means for
slaves that no setup of the address generation hardware has been done, and for masters,
the bus list is undefined. If the driver desires a partial transfer, it must make another call to
the mapping service with the dio list adjusted to not include the faulting buffer.

Finally, if while mapping a transfer, either the d_map_list or d_map_slave services run out
of resources to map the transfer, an error, DMA_NORES, is returned to the device driver. In
this case, the bytes_done field of the dio virtual list is set to the number of bytes that were
successfully mapped in the bus list. This byte count is a multiple of the minxfer field
provided to the d_map_list or d_map_slave service. Also, the resid_iov field of the virtual



Device I/O 2-9

list is set to the index of the first d_iovec of the remaining iovecs that could not be mapped.
The device driver then can initiate a partial transfer on its device and leave the remainder on
its device queue, or choose to leave the entire request on its device queue and wait for
resources to free up (for example, after device interrupt from previous operation). If the
driver chooses not to initiate the partial transfer, it still must make a call to d_unmap_list or
d_unmap_slave (for slaves) to undo the partial mapping.

The only field of the bus list that a device driver modifies is the total_iovecs field to indicate
how many elements are available in the list. The device driver never modifies any of the
other fields in the bus list. It is this list that the device driver uses to setup its device for the
transfer, and it is this list that is provided to the d_unmap_list service to unmap the
transfer. The d_map_list service sets the used_iovecs field to indicate how many
elements it filled out.

As far as the virtual list, the device driver sets up all of the fields except for the bytes_done
and resid_iov fields which are set by the mapping service.

Notes: 

1. More information describing the DMA services for PCI and ISA adapters is
contained in the appendix.

2. These services are typically invoked by using macros (such as D_MAP_INIT and
D_MAP_LIST) defined in /sys/dma.h.

Page Protection
Page protection checking is performed by the d_map_page, d_map_list, and
d_map_slave services by calling the xmemdma kernel service for each page of a
requested transfer. If the intended direction of a transfer is device to memory, then the page
access permissions must allow writing to the page. If the intended direction of a transfer is
from memory to device, then the page access permissions need only allow reading from the
page.

In the case of a protection violation, a return code is returned from the services in the form
of an error code, and no mapping for the DMA transfer is performed. The DMA_BYPASS
flag allows a device driver to bypass the access checking functionality of these services; this
flag should only be used for global system buffers such as mbufs or other command,
control, and status buffers used by a device driver.

Peer-To-Peer DMA Support
Peer-to-Peer DMA is DMA transfer from one adapter’s bus memory to another’s, controlled
by either a Bus Master or a DMA Slave with assistance of the I/O Controller. In either case,
the transfer is independent of the CPU and does not involve system memory.

The flag BUS_DMA supports peer-to-peer DMA operations on calls to d_map_page,
d_map_list and d_map_slave. This flag ensures that these services do not translate the
provided address as a virtual address; instead it ensures that they treat the address as a
bus address.



2-10 AIX Version 4.1 Writing a Device Driver

DMA Master I/O for an ISA Adapter
Because an ISA adapter can only generate 24 bit addresses, it can address up to 16MB. A
device driver may need to ensure that DMA buffers are in low memory, unless there is no
more than 16MB of RAM on the system. A driver allocates such buffers with the rmalloc
kernel service, and later frees them with the rmfree kernel service. Then, the driver can
“bounce” data from user supplied buffers (which may not be in low memory) into the buffer
allocated by rmalloc. Then the driver could cause the data to be transferred to the ISA
adapter with DMA.

For example, if the driver is to transfer data from a user buffer to a DMA master adapter,
some steps for the transfer could be:

Steps for ISA DMA Master Transfer

Module What Device Driver Could Do

xyzopen rmalloc driver buffer(s).
Call DIO_INIT to allocate and initialize a dio structure.
Call D_MAP_INIT which returns “d_handle” containing bus specific services.
Call D_MAP_ENABLE if DMA not already enabled for this “d_handle”.
Call D_MAP_PAGE if rmalloc’ed buffer contained within a 4K page,
 or call D_MAP_LIST if rmalloc’ed buffer(s) span multiple pages.

xyzread or
xyzwrite

Perform PIO write to adapter register to start DMA transfer.
Copy data to bounce buffer (writes only).

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Copy data out of bounce buffer (reads only).
Perform PIO read of adapter register to check DMA status.

xyzclose Call D_UNMAP_PAGE or D_UNMAP_LIST.
Call D_MAP_DISABLE if DMA not already disabled for this “d_handle”.
Call D_MAP_CLEAR to free “d_handle” structure.
Call DIO_FREE to free the dio structure,
 then rmfree the driver buffer(s).
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Here is an example in pseudo-code of how a DMA master transfer could be done:

Initialization entry point: (xyzopen or xyzconfig)

 determine bus type for device from configuration information
 determine 64 vs.32 bit capabilities from configuration
           information
 call ”handle = D_MAP_INIT(bid, DMA_MASTER|flags,
                          bus_flags, channel)”
 if handle == DMA_FAIL
 could not configure
 else
 call ”D_MAP_ENABLE(handle)” (if necessary)

start_io entry point: (xyzread or xyzwrite)

 if single page or less transfer
 call ”result = D_MAP_PAGE(handle, baddr,busaddr, xmem)”
 if result == DMA_NORES
 no resources, leave request on device queue
 else if result == DMA_NOACC
 no access to page, fail request
 else
 program device for transfer using busaddr
 else

create dio list of virtual addresses involved in 
transfer

 call ”result = D_MAP_LIST(handle, minxfer, vlist, blist)”
 if result == DMA_NORES
 not enough resource, either initiate partial transfer 
             and leave remainder on queue or leave entire 
             request on the queue and call d_unmap_list to 
             unmap the partial transfer.
 else if result == DMA_NOACC
 use bytes_done to pinpoint failing buffer and fail 
             corresponding request
 adjust virtual list and call d_map_list again
 else if result == DMA_DIOFULL
 ran out of space in blist. either initiate partial 
             transfer and leave remainder on queue or leave 
             entire request on the queue and call d_unmap_list 
             to unmap the partial transfer.
 else
 program device for scatter/gather transfer using blist

finish_io entry point: (xyzintr)

 if single page or less transfer
 call ”D_UNMAP_PAGE(handle, busaddr)”
 else
 call ”D_UNMAP_LIST(handle, blist)”

unconfigure code: (xyzclose or xyzconfig)

 call ”D_MAP_DISABLE(handle)” (if necessary)
 call ”D_MAP_CLEAR(handle)”
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DMA Slave Transfers on an ISA Adapter
Here is an example in pseudo-code of how a DMA slave transfer could be done:

initialization entry point: (xyzopen or xyzconfig)

 determine bus type for device from configuration information
 call ”handle = D_MAP_INIT(bid, DMA_SLAVE, bus_flags, 
                           channel)”
 if handle == DMA_FAIL
 could not configure
 else
 call ”D_MAP_ENABLE(handle)” (if necessary)

start_io entry point: (xyzread or xyzwrite)

 create dio list of virtual addresses involved in transfer
 call ”result = D_MAP_SLAVE(handle, flags, minxfer, vlist,
                            chan_flags)”
 if result == DMA_NORES
 not enough resource, either initiate partial transfer 
            and leave remainder on queue or leave entire 
            request on the queue and call d_unmap_slave to 
            unmap the partial transfer.
 else if result == DMA_NOACC
 use bytes_done to pinpoint failing buffer and fail 
            corresponding request
 adjust virtual list and call d_map_slave again
 else
 program device to initiate transfer

finish_io entry point: (xyzintr or xyzclose)

 call ”error = D_UNMAP_SLAVE(handle)”
 if error
 log error

retry, or fail

unconfigure entry point: (xyzclose or xyzconfig)

 call ”D_MAP_DISABLE(handle)” (if necessary)
 call ”D_MAP_CLEAR(handle)”



Device I/O 2-13

DMA Master Transfers on a PCI Adapter
The main difference between DMA on ISA and DMA on PCI is that there is no need for
“bounce” buffers for PCI DMA; also, there are no DMA slave adapters on a PCI bus.

For example, if the driver is to transfer data from a user buffer to a DMA master adapter,
some steps for the transfer could be:

Steps for PCI DMA Master Transfer (Short Term)

Module What Device Driver Could Do

xyzopen Call DIO_INIT to allocate and initialize a dio structure.
Call D_MAP_INIT which returns “d_handle” containing bus specific services.
Call D_MAP_ENABLE if DMA not already enabled for this “d_handle”.

xyzread or
 xyzwrite

Call D_MAP_PAGE if buffer contained within a 4K page, or
 call D_MAP_LIST if buffer(s) span multiple pages.
Perform PIO write to adapter register to start DMA transfer.

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Perform PIO read of adapter register to check DMA status.
Call D_UNMAP_PAGE or D_UNMAP_LIST.

xyzclose Call D_MAP_DISABLE if DMA not already disabled for this “d_handle”.
Call D_MAP_CLEAR to free “d_handle” structure.
Call DIO_FREE to free the dio structure.

I/O Controller Interface Translation on Micro Channel Systems
A processor associates device registers or memory to particular addresses via I/O controller
interface translation. When a processor instruction accesses an I/O bus, the address
referenced by that instruction is said to access an I/O controller interface because all three
processor architectures expect an I/O controller to interface between a processor and an
I/O bus associated with that I/O controller.

I/O controller interface translation, like page address translation, is affected by the value of
the segment ID contained in a segment register.

One performs I/O by executing load or store instructions referencing virtual addresses.
Some other architectures (for example, the Intel x86 series) rely on special instructions to
perform I/O to particular ports. The three processor architectures considered here translate
addresses so that system device registers, adapter registers, adapter RAM, and so on,
appear to be part of virtual memory.

The figure How an Address Specifies a Segment Register shows how the address specifies
which segment register to use. For example, the address 0x50285740 says to look in
segment register 5 for the segment ID, and it references byte 0x285740 within that
segment. If the high order (leftmost) bit in segment register 5 is 0, then the address is
translated as a page address, otherwise, the address is translated so that one can access
an I/O bus through its I/O controller interface.
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segment
register
number

byte offset into segment

4 bits 28 bits

32 bit I/O address

segment register

Segment #

0 4 31

Bus ID
prepended
to offset

How an Address Specifies a Segment Register

A bus ID is a segment identifier associated with an I/O segment. The Format of a Bus ID
figure shows the overall format of a bus ID contained in a segment register. Note that the
high order bit is set to 1. This bit distinguishes which kind of address translation to perform:
when set, it signifies that addresses in this segment require I/O controller interface
translation.

BUID (Bus Unit ID) identifies which bus to use

user mode flag
supervisor mode flag

I/O flag

Segment #

Offset Prefix
(Bus Memory Only)

I/O controller
information e.g., 0x820c0020

1

Format of a Bus ID

I/O controller interface translation differs from page address translation in that no page
tables are searched. So there is no way to protect one program accessing an I/O bus from
another program accessing the same bus.
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I/O Address Spaces on Micro Channel Systems
The I/O Subsystem figure shows how portions of the I/O subsystem work with one another.
Note that a system processor does not access an I/O bus directly, but relies on a
special-purpose processor, mounted on the system planar with its own dedicated RAM, to
serve as an interface between the system bus, which accesses system RAM, and the I/O
bus.

I/O
Channel
Controller

Central
Electronics
Complex

system bus

system bus

System

RAM

IOCC
RAM

IOCC
control
space

IIO
bus

System
Planar
Devices

Tags &
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Micro Channel
Slots

Bus I/O
& Bus
Memory
Space

The I/O Subsystem

Note that there are devices on the system planar itself, and there are devices plugged into
slots accessing the Micro Channel bus. There are also resources on the IOCC itself that
one may wish to modify or inspect. There is a distinction between I/O to a system planar
device (or the IOCC itself) and I/O to a device attached to the Micro Channel bus. You
specify which kind of I/O to do by selecting an I/O address segment, or “I/O space.”

There are several kinds of I/O address spaces defined by each processor architecture. The
ones that affect a device driver are:

• IOCC control space (or system I/O space)

• Bus I/O space

• Bus memory space

Devices that are attached to the system planar board (also known as the motherboard)
have addresses mapped to IOCC control space. Examples of such devices are: system
timer, calendar, non-volatile RAM, the LED registers, programmable option select (POS)
registers, and other planar device registers.

IOCC control space consists of one I/O segment called the IOCC control segment. An I/O
address translates to this segment if the IOCC bit in the IOCC controller information part of
a bus ID is set to 1. See the IOCC Control Space (Portion) figure for an example (for the
POWER architecture) of what system planar devices are mapped to which addresses.

Both bus I/O space and bus memory space are collectively referred to as standard I/O
space, and are accessed within one segment.
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Any attempt to access IOCC control space without system privilege (as marked in the bus
ID) causes an I/O exception.

0x400020

0x400024

0x40002c

0x40002f

0x400084

0x4000c0

0x4000e0
0x4000e4

0x4000ea

0x4000ec

0x4000fc

0x400000

0x410000

0x4f0000

0xa00000

0xa00300

4 bytes

4 bytes

4 bytes

1 byte

4 bytes

32 bytes

1 byte

4 bytes

2 bytes

1 byte

1 byte

NVRAM,
2 MB

bus status register

TCW Itag anchor addr register

component reset register

standard I/O reset register

interrupt request register (IRQ)

time of day clock

system reset status register

power status
register

power reset
register

interrupt request
register

I/O board EC
level register

POS registers slot 0

POS registers slot 1

POS registers slot 15

operator panel LEDs (2 bytes)

IOCC Control Space (Portion)

Note: Some of the information in the preceding IOCC Control Space (Portion) figure
applies only to the POWER architecture and not to the PowerPC architecture.

So, for example, the address 0xf0400020 refers to BUID in register 15, where the offset
specifies the bus status register. Note that IOCC RAM is mapped to IOCC control space.

The register addresses start from the value of IO_IOCC as found in the header file
/usr/include/sys/iocc.h. Here the value of IO_IOCC is 0x00400000 (4 MB).
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0x0030
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0xffff
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I/O regs

I/O regs

I/O regs
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The Bus I/O Space (Example) figure shows an example of how adapters attached to the I/O
bus can be mapped to bus I/O space. The IOCC checks each access to bus I/O space to
see if the address is within range of some region mapped in bus I/O space. If not, it
generates an I/O exception.

Note that the SCSI adapter has no registers mapped to addresses in bus I/O space, but the
others do. For example, a load instruction from address 0x50000030 would (if segment
register 5 has a bus ID for the standard I/O segment) get four bytes from the serial
adapter’s first register. Provided that segment register 15 has a standard I/O segment’s bus
ID, a store instruction to address 0xf00086a0 would place four bytes of data in the first
register on the Token-Ring adapter.
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4K
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memory mapped
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Each 4K page of bus memory space that is mapped for translation is associated with a
Translation Control Word (TCW), which is a data structure kept in RAM dedicated for use by
an IOCC. Any attempt to read or write to an address that is not within a page associated
with a TCW causes an I/O exception. For more information on TCWs and protection, see
“Translation, Protection, and the TCW Table,” in “Programming Model: System I/O
Structure” in POWERstation and POWERserver Hardware Technical Information-General
Architectures.

The Bus Memory Space (Example) figure shows an example of how the same four adapters
have bus memory addresses mapped to RAM either on the adapters or on the system itself.
Note that in this case, the serial adapter has no addresses in bus memory space for its use.

In this example, a load instruction from address 0xf0010000 would read the first four bytes
in RAM on the SCSI adapter. Similarly, a store instruction to address 0xf00e0000 would
write four bytes to RAM on the multiprotocol adapter.

Once the mapping is in place, transfer from system memory to adapter RAM amounts to
issuing a sequence of load and store operations from one region of bus memory space to
another.
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Programmed I/O to Micro Channel Adapters
Programmed I/O requires a properly formatted bus identifier in a segment register. The
device driver’s configuration method gets a bus identifier for its particular bus by reading its
parent bus_id attribute out of the predefined attribute (PdAt) object class of the ODM. The
configuration method passes the bus identifier, within the device dependent structure
(DDS), to the device driver’s configuration entry point where the bus identifier is further
modified as needed. For example, a driver may wish to set the bus ID bits associated with
privilege key and IOCC space select by the following statement:

bid |= (IOCCSR_KEY | IOCCSR_SELECT); /* see <sys/iocc.h> */

To perform I/O to IOCC space, one uses the following macros:

IOCC_ATT(bid, iocc_addr)  /* to place Bus ID in a segment reg */
BUSIO_PUTL(long_val, iocc_addr)    /* to write four bytes */
BUSIO_GETL(long_val)               /* to read four bytes */
BUSIO_PUTS(short_val, iocc_addr)   /* to write two bytes */
BUSIO_PUTC(char_val, iocc_addr)    /* to write one byte */
IOCC_DET(iocc_addr)

To perform I/O to bus I/O space (adapter registers):

BUSIO_ATT(bid, io_addr)  /* to place Bus ID in a segment reg */
BUSIO_PUTLX(long_val,  io_addr)  /* to write four bytes */
BUSIO_GETLX(long_val)            /* to read four bytes */
BUSIO_PUTSX(short_val, io_addr)  /* to write two bytes */
BUSIO_PUTCX(char_val,  io_addr)  /* to write one byte */
BUSIO_DET(io_addr)

To perform I/O to bus memory space (adapter RAM):

BUSMEM_ATT(bid, mem_addr)
BUS_PUTLX(long_val, io_addr) /* to write four bytes */
BUS_GETLX(long_val) /* to read four bytes */
BUS_PUTSX(short_val, io_addr) /* to write two bytes */
BUS_PUTCX(char_val, io_addr) /* to write one byte */
BUSMEM_DET(io_addr)

The macros suffixed with an ‘X’ have exception handlers built into them. The return value is
nonzero if an I/O exception occurs during the data transfer. I/O to IOCC control space does
not generate an I/O exception if there is an error. To verify that data has been written
correctly, you need to read it after it is written.

It is possible to use macros that lack exception handlers, but if you don’t provide your own
exception handler, then an I/O exception would cause the system’s default handler to halt
the system. There are other macros defined in the header file /usr/include/sys/ioacc.h.
For more information on this, see “I/O Bus Attach/Detach Macros for Programmed I/O (PIO)
Operations,” in the chapter about device drivers in AIX Version 4.1 Kernel Extensions and
Device Support Programming Concepts.
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DMA Master I/O on a Micro Channel Adapter
As an example, if the driver is to transfer data from a user buffer to a DMA master adapter,
some steps for the transfer could be:

Steps for DMA Master I/O for Micro Channel

Module What Device Driver Could Do

xyzopen Call d_init to allocate and initialize DMA channel.

xyzread or
 xyzwrite

Call d_master to map pages of I/O space or RAM to TCWs.
Perform PIO write to adapter register to start DMA transfer.
Check for PIO exception and report any error.

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Perform PIO read of adapter register to check DMA status.
Check for PIO exception and report any error.
Call d_complete to unhide pages and check for errors detected by IOCC.

xyzclose Call d_clear to free DMA channel.

DMA Slave I/O on a Micro Channel Adapter
As an example, if the driver is to transfer data from a user buffer to a DMA slave adapter,
some steps for the transfer could be:

Steps for DMA Slave I/O for Micro Channel

Module What Device Driver Could Do

xyzopen Call d_init to allocate and initialize DMA channel.

xyzread or
xyzwrite

Call d_slave to map pages of I/O space or RAM to Tags.
Perform PIO write to adapter register to start DMA transfer.
Check for PIO exception and report any error.

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Call d_complete to unhide pages and check for errors detected by IOCC.

xyzclose Call d_clear to free DMA channel.
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Alignment Issues for DMA on Micro Channel
As described under “Hiding DMA Data” in “Understanding DMA Transfers” in the chapter on
kernel services in AIX Version 4.1 Kernel Extensions and Device Support Programming
Concepts, pages covering buffers for use by DMA services may be hidden unless
DMA_NOHIDE is specified. If the buffer is supplied by a user, and if the buffer is not page
aligned, then there is a chance that nearby data could be on the same page as the buffer
being hidden. If a user routine attempts access to such data, its context will sleep until the
page is unhidden. If the driver does not unhide the page, then such user routines would
sleep indefinitely.

Any buffers that a driver allocates for DMA transfers may preferably be allocated from the
kernel heap (via xmalloc) so that the buffer can be page aligned: this lessens the chance of
nearby data being inadvertently hidden, and simplifies the coordination of data transfer with
the adapter. Also, fewer pages may be used.

If a DMA buffer is to be shared between the system processor (the driver) and a DMA
master adapter, then it would be registered with the flag DMA_NOHIDE. If a DMA buffer is
to be so shared, or shared between two DMA master adapters (where page hiding is
irrelevant), then there is a chance of data corruption due to race conditions (see Chapter 5,
Sychronization). An I/O controller reads and writes data in chunks which are the size of its
data cache line. If a DMA transfer starts at an address that is not cache-aligned, then
nearby data is inadvertently accessed. A race condition can be avoided by synchronizing
the access, or by ensuring that DMA accesses are cache-aligned and thereby
non-overlapping. A buffer can be cache aligned with the kernel services d_align or
d_roundup.
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Here is an example of a call-side routine that sets up DMA master transfers on a Micro
Channel adapter. Please note that the buffers are allocated by the driver itself and they are
accessed by the system and the adapter, so they are not hidden (DMA_NOHIDE) from the
system.

int dma_init()
{
 caddr_t busptr; /* points to bus address space */
 int rc; /* followed by other necessary declarations */

scb.ccbp = (t_ccb *) xmalloc(PAGESIZE, PGSHIFT, pinned_heap);
 if (scb.ccbp == NULL)
 { DTRC(0x20, 0x43, (ulong) scb.ccbp);/* custom trace macro */

return(ENOMEM);
 }

 /* clear the buffer for use */
 bzero(scb.ccbp, PAGESIZE);

 /* SCB – System Control Block /* you would define your own */
 * TSB – Termination Status Block
 * Separate regions must be set up for transferring data for DMA
 * reads and DMA writes. These separate regions should each consist
 * of an integral number of cache lines. The Command Control
 * Block (CCB) starts on the page boundary, which is also a cache
 * line boundary. The CCB and TSB must reside in separate 128–byte
 * regions for cache consistency.
 */
 scb.ccb_size = d_roundup(sizeof(t_ccb)); /* size of ccb struct */

 /*
 * The algorithm used by d_roundup() is :
 * outlength = (inlength + cache_line_size–1) & (cache_line_size–1);
 * where inlength is the length in bytes of the structure to be mapped.
 *
 * So the next available cache line boundary is at ccbp + ccb_size
 */
 scb.tsbp = (uint)scb.ccbp + (uint)scb.ccb_size;

 /* need the size of tsb also for flushing */
 scb.tsb_size = d_roundup(sizeof(t_tsb)); /* size of tsb struct*/

 /* the amount of data that is actually used is:(should be 256 bytes)*/
 scb.ctl_size = (uint)scb.tsb_size + (uint)scb.ccb_size;

 /* The ccb is mapped to the beginning of the bus memory window
 * configured for this device. The tsb follows.
 */
 scb.bus_ccbp = dds.dds_hdw.dma_bus_mem; /* device dep. struct */
 scb.bus_tsbp = (uint)scb.bus_ccbp + (uint)scb.ccb_size;

 /* initialize the ccb before mapping */
.....
 /* set up cross memory descriptor for the ccb and tsb */
 scb.ctl_xmem.aspace_id = XMEM_INVAL;
 rc = xmattach((char *)scb.ccbp, scb.ctl_size, &scb.ctl_xmem, SYS_ADSPACE);
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 if (rc == XMEM_FAIL)
 { DTRC(0x20, 0x43, (ulong) rc);

xmfree(scb.ccbp, pinned_heap);
return(ENOMEM);

 }

 /* map the control area to the first page of bus dma memory space */
 d_master(scb.chan_id, DMA_READ|DMA_NOHIDE, (caddr_t)scb.ccbp,

scb.ctl_size, &scb.ctl_xmem, scb.bus_ccbp);

 /* attach to the bus segment */
 busptr = BUSIO_ATT(dds.dds_hdw.bus_id,(caddr_t)dds.dds_hdw.bus_io_addr);

 /* write address of the ccb to the command port, it never changes */
 port.command = (caddr_t) scb.bus_ccbp;
/* pio_retry() logs temporary failure & after 3rd fail gives up */
if(BUS_PUTLRX((busptr + HLZ1_COMMAND), port.command))

rc = pio_retry(rc, PUTL, addr, port.command);

if (port.pio_fatal) /* check for a permanent PIO exception */
 { DTRC(0x20, 0x45, (ulong) rc);

xmdetach(&scb.ctl_xmem);
xmfree(scb.ccbp, pinned_heap);
BUSIO_DET(busptr);
return(EIO); /* must read this reg to continue */

 }

 /* set the dma busmem address for the input buffer mapping */
 dma.indmap = dds.dds_hdw.dma_bus_mem + PAGESIZE;
 dma.window_size = dds.dds_hdw.dma_bus_length – PAGESIZE;
dma.enddmap = dds.dds_hdw.dma_bus_mem + dds.dds_hdw.dma_bus_length;

 /* initialize mapping control variables */
 dma.last_inbuf = NULL;
 dma.last_outbuf = NULL;

 /* enable the device as a busmaster, enable interrupts,clear IV on read*/
 port.sub_ctrl = .... /* device flags */;
 if(rc = BUS_PUTCX((busptr + HLZ1_SUB_CTRL), port.sub_ctrl))

rc = pio_retry(rc, PUTC, addr, port.sub_ctrl);

 if (port.pio_fatal) /* check for a permanent PIO exception */
 { DTRC(0x20, 0x46, (ulong) rc);

xmdetach(&scb.ctl_xmem);
xmfree(scb.ccbp, pinned_heap);
rc = EIO; /* must read this reg to continue */

 }
 BUSIO_DET(busptr);
 return(rc); /* error already logged if PIO exception */

} /* end dma_init() */
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Chapter 3. Interrupts

This chapter describes the issues associated with writing an interrupt handler for an adapter
on AIX Version 4.1. It contains the following sections:

• Overview, on page 3-1
• Interrupt Hardware Support, on page 3-2
• Interrupt Levels, on page 3-2
• Interrupt Priorities, on page 3-4
• Interrupt Level Mapping, on page 3-6
• Interrupt Handling, on page 3-9
• Interrupt Management Kernel Services, on page 3-9
• Multiprocessor Interrupt Concerns, on page 3-10

Overview
Adapters on any bus can generate interrupts to the host processor. Each interrupt is
associated with a particular level, sometimes called an Interrupt Request Level (IRQ). For
example, one adapter can generate interrupts on IRQ2, although another can generate
interrupts on IRQ3. Assignment of interrupt levels to adapters is done by one of the
following methods:

• Setting POS registers on the adapter during device initialization. Some buses do not
support this.

• Manually setting the interrupt level via hardware switches.

Interrupt levels on certain buses, like the Micro Channel or PCI, can be shared. This means
that more than one adapter can generate interrupts at the same level. In this case, each
adapter must provide a register that can be interrogated to determine if the current interrupt
is due to this particular adapter. This enables the software to determine which adapter
actually generated the interrupt. Having each adapter on a separate interrupt level usually
gives better performance than interrupt-sharing on a particular level.

Each adapter also provides a procedure, which software must follow, that resets an interrupt
indication. This must be done before any more interrupts are generated by the adapter.

Device drivers usually provide an interrupt handler to handle these situations. An interrupt
handler is a function that is called by the AIX kernel whenever an interrupt occurs on a given
IRQ level. The interrupt handler must first determine whether the interrupt was caused by
the adapter this driver is managing. If not, the handler exits immediately indicating no action
taken. If so, the interrupt handler performs whatever processing is needed to deal with the
interrupt, resets the interrupt in the adapter, and returns to the AIX kernel.

Interrupt handlers, like most of the AIX kernel, can be preempted. They run with some
interrupts enabled. When a device driver configures itself, it specifies the priority of
interrupts from its associated adapter. When an interrupt occurs, only interrupts from
devices at that priority level and below are disabled. Higher priority interrupts can still occur.
Interrupt handlers for low priority devices (such as, a printer) can be preempted if an
interrupt occurs on a high priority device (such as, an unbuffered high-speed
communications link).

The AIX operating system provides routines so that interrupts at higher levels can be
disabled and enabled during the operation of the interrupt handler. Use these routines with
caution so that the higher priority interrupts can be serviced.
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Interrupt Hardware Support
The processor recognizes the following types of hardware interrupts:

• SYSTEM RESET
• MACHINE CHECK
• DATA STORAGE
• INSTRUCTION STORAGE
• EXTERNAL
• ALIGNMENT
• PROGRAM
• FLOATING-POINT UNAVAILABLE
• DECREMENTER (available on PowerPC only)
• SYSTEM CALL
• TRACE
• FLOATING-POINT ASSIST

The hardware interrupts in the preceding list are the only way that normal instruction
execution can be interrupted. Thus all interrupt signals must be converted to one of these to
interrupt the processor. An interrupt vector for each type of hardware interrupt is loaded in
low memory and is executed upon receipt of the interrupt. The first two types of interrupts,
SYSTEM RESET and MACHINE CHECK, may occur at any time regardless of the state of
the interrupt mechanism and are processed immediately. The other interrupts are handled in
the order listed from highest to lowest priority.

The hardware interrupt type EXTERNAL is the interrupt into which all bus level interrupts
are multiplexed. This is the type of interrupt that a device driver will be required to handle.

For the PowerPC architecture, the Machine State Register (MSR) and the Save Registers
(SRR0 and SRR1) are used to process external interrupts. The MSR register contains an
enable bit which is used to enable or disable external interrupts. The SRR registers are
used to save the processor state at the time of the interrupt. For more details on the these
registers and the other types of hardware interrupts, see PowerPC Architecture
(SR28–5124).

The hardware interrupt mechanism between the processor and the device is bus
architecture dependent. For Micro Channel architecture, the interrupt controller is embedded
in the I/O Channel Controller (IOCC). For PowerPC based platforms with PCI and ISA
buses, a System I/O Bridge chip (SIO) and a proprietary PCI Bridge/Controller are used to
relay the interrupt signal to the processor as an external interrupt.

Interrupt Levels
The mechanism by which the processor knows where the interrupt originated depends on a
software abstraction of the interrupt source referred to as processor interrupt level.
(Processor interrupt level is also called software interrupt level, or just interrupt level.) The
interrupt level corresponds to a distinct hardware interrupt level present on a device. For
example, each bus interrupt level that originates on the PCI bus is converted into a unique
software interrupt level that the processor understands and uses to call the proper interrupt
handler for that interrupt. This design isolates the software from the information the
hardware presents to indicate the interrupt.

The number of interrupt levels that a processor recognizes is architecture dependent. The
POWER machines (RS1, RSC, and RS2) support 64 interrupt levels, and the PowerPC
machines can support up to 8000 interrupt levels. An interrupt must map into one of these



Interrupts 3-3

levels to be correctly serviced; that is, each hardware interrupt level must be assigned to
one of the processor interrupt levels. The details of this mapping process is described in
“Interrupt Level Mapping”, on page 3-6.

Because individual adapters interrupt at various hardware levels of their own depending on
what type of bus they are on, there is one more configuration issue to consider. Some bus
implementations support assigning hardware interrupt levels at system configuration time.
System configuration software determines which adapters are present and assigns an
interrupt level to the device adapter using special bus commands. System configuration
then sets the device configuration hardware levels and initialization data to reflect this
assignment.

For example, on the Micro Channel bus, there are 16 bus interrupt levels. A typical Micro
Channel adapter has several bus interrupt levels from which to choose. Before setting which
hardware level to use, the adapter’s configuration method calls the busresolve routine. The
busresolve routine returns a bus interrupt level that does not conflict with any other
adapters on the bus. The bus interrupt level returned by busresolve is written to the ODM
database. The device driver open routine can refer to the ODM database to register the
interrupt handler at the correct level.

However, some buses, like the ISA bus, do not support programmable assignment of
hardware interrupt levels. The assignment of these hardware interrupt levels is usually
hardwired or selected by a jumper on the adapter. In this case, the Predefined Attributes
PdAt entries of the ODM database must be set properly by the user to reflect the manual
settings (or the manual settings changed to match the ODM database), because there is no
way for the values to be changed by software. Driver developers should remember this
important difference about ISA bus configuration.

Warning: Do not change the Predefined Attributes (PdAt) object class by removing
information that was shipped with the base operating system.

On some buses, such as the PCI and MCA buses, interrupt level sharing is supported. To
ensure that busresolve handles these levels correctly, the ODM stanza for interrupt level
must have the type field set to ”I”. Non-shareable interrupts (all those on the ISA bus, for
example) are declared with type set to ”N”. Shared interrupt levels on the MCA buses must
all request the same priority, but this is not required for the PCI bus.

The following sample ODM entry declares an interrupt level to be shareable by setting the
attribute type to ”I”:

PdAt:
        uniquetype = ”adapter/pci/sample”
        attribute = ”intr_level”
        deflt = ”15”
        values = ”15”
        width = ””
        type = ”I”
        generic = ”D”
        rep = ”nl”
        nls_index = 3

Here is an example of a non-shareable interrupt (type = ”N”):
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PdAt:
        uniquetype = ”adapter/isa/sample”
        attribute = ”intr_level”
        deflt = ”9”
        values = ”5, 7, 9”
        width = ””
        type = ”N”
        generic = ”DU”
        rep = ”nl”
        nls_index = 4

Chapter 6, “Device Configuration Methods,” has more information on the ODM database
and adapter device attributes.

The following table summarizes the interrupt level properties for different types of buses.

Bus Interrupt
Sensitivity

Interrupt Levels
Shareable?

Programmable 
Interrupt Levels?

Available 
Interrupt Levels

MCA Level Yes, but must have
same priority.

Yes 1 – 16

PCI Level Yes Yes 15

ISA Edge No No 5,7,9,11,14,15 *

*IRQ 15 is used by PCI or ISA, but not both.

In some documentation, the distinction between hardware interrupt levels and processor
interrupt levels is not made, because there is a one-to-one mapping between the two.
Usually, just the term interrupt level is used.

For information on how interrupts are processed, see “Processing Interrupts” in
AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts.

Interrupt Priorities
Each processor interrupt level (see “Interrupt Levels”, on page 3-2) also has a interrupt
priority associated with it. The following is a list of all the interrupt priorities (sorted so the
interrupt priorities with higher priority appear first):

• INTMAX
• INTCLASS0
• INTCLASS1
• INTCLASS2
• INTCLASS3
• INTOFFL0
• INTOFFL1
• INTOFFL2
• INTOFFL3
• INTIODONE
• INTBASE

These interrupt priorities represent the order in which the kernel enables external interrupts
to be processed. (The sys/m_intr.h file shows the numeric value associated with each
priority. The higher priorities have lower numeric values.)

Although the physical mechanisms vary for the different architectures, a basic rule for all
architectures is that the interrupt priority must be of a higher priority than the current
processor priority for the interrupt to be serviced. For example, if the processor is currently
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servicing an interrupt of priority INTCLASS3, any off-level interrupts will not be serviced until
the INTCLASS3 interrupt handling is finished, and the processor priority is lowered.

The choice of what priority to run your device driver interrupts is based on two criteria:

• The maximum interrupt latency requirements.
• The interrupt execution time of the device driver

The interrupt latency requirement is the maximum time within which an interrupt must be
serviced. If it is not serviced in this time, some event is lost or performance is degraded.
The interrupt execution time is the number of machine cycles required by the device driver
to service the interrupt.

A device with a short interrupt latency time must have a short interrupt service time. In other
words, a device that loses data if not serviced quickly must have a higher priority interrupt
level. This in turn requires that it spends less time in the interrupt handler. The following list
contains general guidelines for interrupt service times:

Interrupt Priority Service Time

INTMAX All interrupts disabled

INTCLASS0 Less than 200 cycles

INTCLASS1 Greater than 200 but less than 400 cycles

INTCLASS2 Greater than 400 but less than 600 cycles

INTCLASS3 Greater than 600 but less than 800 cycles

INTOFFL0 Less than 1500 cycles (off-level priority)

INTOFFL1 Greater than 1500 but less than 2500 cycles (off-level priority)

INTOFFL2 Greater than 2500 but less than 5000 cycles (off-level priority)

INTOFFL3 5000 cycles or greater (off-level priority)

INTIODONE I/O completion processing (lowest off-level priority)

INTBASE All interrupts enabled

Note: To find out your interrupt service time, you can put a trace hook with a time stamp
into both the entry and the exit points of your interrupt handler. The resulting trace
tells you the cumulative time that was spent in the handler. Divide this time by the
cycle speed of your system to get the number of cycles used.

Once an interrupt priority has been determined, the information is written to the system via
an ODM entry. The following sample entry assigns an interrupt priority INTCLASS2, which
has the value 3, to a device:

        uniquetype = ”adapter/mca/hscsi”
        attribute = ”intr_priority”
        deflt = ”3”
        values = ”3”
        width = ””
        type = ”P”
        generic = ”D”
        rep = ”nl”
        nls_index = 5

Chapter 6, “Device Configuration Methods,” has more information on the ODM database.
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Interrupt Level Mapping
The mapping of interrupt source to a specific processor interrupt level is dependent upon
the hardware architecture. This section briefly describes the mappings for the POWER,
POWER2, and PowerPC architectures and, also, discusses software interrupt priority.

The POWER architecture has a simple static mapping that directs the interrupt sources to
one of the 64 available processor levels. Since there are at most 2 IOCCs, each bus has its
16 hardware levels directed to 32 of the existing processor levels and the rest are used for
other interrupt sources. The POWER Interrupt Level Mapping figure shows the details of the
processor level mapping scheme.
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LEVEL ASSIGNED

0–15 IOCC 0
  24 Early Power-Off Warning (EPOW)
  25 SGA – integrated graphics adapter
  28 SLA0
  29 SLA1
  30 SLA2
  31 SLA3
32–47 IOCC 1
  48 External Check
  62 Decrementer
  63 Off-level hardware assist

The interrupts are grouped into priorities by using a mask built and maintained by the
interrupt subsystem called the External Interrupt Mask (EIM). This mask is changed
whenever a new priority is set, thereby enabling the correct processor levels.

Although the POWER2 architecture also has 64 processor levels, it does not have the
priority flexibility of the POWER architecture. There is a direct relationship of processor level
and priority. Of the 64 processor levels, the hardware presents interrupts from the most
favored (level 0) to the least favored (level 63). Thus, interrupt levels must be dynamically
assigned based on priority.

The interrupt level allocation algorithm groups the processor levels into ranges
corresponding to software priorities, and assigns them as needed. This ensures that higher
priority interrupts are serviced before those of lesser priority. In addition to these
dynamically allocated levels, there are other interrupt levels that are pre-allocated to specific
sources. These can be seen in the POWER2 Interrupt Level Mapping figure.
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The PowerPC interrupt logic is very different from the previous architectures. Each
hardware level interrupt has a priority associated with it and will only interrupt on processors
if this priority is more favored than the current processor priority. The processor priority is
set by software for each processor.

Attached to each interrupt source is the Bus Unit Identifier (BUID) and a 4-bit code that
indicates the source on the specific Bus Unit Controller (BUC).  These two values are used
by the interrupt subsystem to determine the interrupt level.  On the PowerPC architecture,
there are a possible 8000 levels, of which 160 are currently being used. These levels are
assigned to groups that contain 16 interrupt levels. The poll groups are dynamically
assigned to a BUID through the buid_map when the interrupt handler is registered. This
mapping is shown in the PowerPC Interrupt Level Mapping figure.
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Interrupt Handling
When an external interrupt is first detected, the system immediately calls the external
interrupt first-level interrupt handler (FLIH), which queries the hardware registers. At this
point on POWER and POWER2 machines, the interrupt is directly serviced. On PowerPC
machines, however, the FLIH will enqueue the interrupt based on level and priority. This
raises a flag indicating that there is pending work to be done and it will be serviced later,
thus the PowerPC essentially enqueues all interrupts.

The kernel detects queued interrupts at various key times, such as when enabling to a
less-favored priority from a more favored one. Once a queued interrupt is detected and the
processor is executing at (or about to be enabled to) a priority that lets the pending interrupt
be serviced, the current machine state is saved, and interrupt processing is started.

Then the kernel begins calling the interrupt handlers that are registered at the specified
level. Because interrupt levels can be shared on certain buses, the adapter which caused
the interrupt is not necessarily known at this stage. The order in which the kernel calls
interrupt handlers at a certain level is the order in which they were initially registered. This
ordering does not change as long as the interrupts are registered. Thus, there is no way to
“steal” interrupts from a previously loaded handler at the same level and priority.

Once your second-level interrupt handler (SLIH) is called, it must determine whether the
associated adapter caused the interrupt. If the interrupt was caused by the adapter, the
interrupt handler does its necessary work, possibly schedules more off-level work, and
returns INTR_SUCC. If the interrupt was not caused by the adapter, INTR_FAIL is returned,
and the kernel calls the next handler in the list.

Interrupt Management Kernel Services
The following list contains interrupt management kernel services. For more detailed
information on the syntax and return codes, see AIX Version 4.1 Technical Reference,
Volume 5: Kernel and Subsystems.

i_init Defines an interrupt handler to the system, connects it to an interrupt level,
and assigns an interrupt priority to the level.

i_clear Removes an interrupt handler from the system.

Note: A system assert will occur if this service is called for an undefined
interrupt handler.

i_disable Raises the interrupt priority to the specified level, thus disabling all interrupt
levels at a less-favored interrupt priority.

i_enable Restores the interrupt priority to a less-favored interrupt priority, thus
enabling all interrupt levels of a higher priority.

i_mask Disables the specified bus interrupt level.

i_unmask Enables the specified bus interrupt level.

i_sched Schedules an off-level interrupt handler to be executed.

The i_reset kernel service, which was used to reset a bus interrupt level in releases before
AIX Version 3.2.5, no longer needs to be explicitly called. Its function has been moved to
the first-level interrupt handler (FLIH), and thus interrupt levels are automatically reset.
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Multiprocessor Interrupt Concerns
Ensuring proper synchronized access to the interrupt handlers is of major concern when
writing handlers for a multiprocessor (MP) environment. AIX Version 4.1 provides two kernel
services that enable you to make your interrupt handling MP-safe:

disable_lock Raises the interrupt priority, and locks a simple lock if necessary.

unlock_enable Unlocks a simple lock if necessary, and restores the interrupt priority.

Essentially, these kernel services should be used wherever i_enable and i_disable are
normally used in a uniprocessor interrupt handler. The simple lock kernel services should
not be called directly, use disable_lock and unlock_enable to ensure that a thread will
never be interrupted while it holds a simple lock. Allowing a thread which holds a simple lock
to be interrupted can deadlock the system.

In an MP environment it is not necessary for all the interrupt handlers to be MP-safe;
however, this is a desired goal for increased performance. If an interrupt handler that is not
MP-safe is registered, the allocated interrupt level is marked for funnelled operation, which
is serviced by the master processor only. Additionally, all the other interrupt handlers at this
level will be routed to the master processor. In other words, all interrupt handlers sharing the
same level are either considered all MP-safe or all funnelled. Once all interrupt handlers that
are funnelled are removed from a level (by calling i_clear), any remaining MP-safe handlers
on that level will be allowed to run non-funnelled.

For more information and definitions of multiprocessor terms, see “Understanding
Multiprocessor-Safe Device Drivers” in AIX Version 4.1 Kernel Extensions and Device
Support Programming Concepts.
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Chapter 4. Memory Management

This chapter discusses the various system calls typically utilized by kernel extensions and
device drivers in the manipulation of kernel memory. These services include:

• Memory Allocation Services, on page 4-1 (allocate and free kernel memory)
• Memory Pinning Services, on page 4-3 (pin and unpin kernel memory)
• Memory Access Services, on page 4-5 (transfer data between user memory and kernel

memory)
• Virtual Memory Management Services, on page 4-6 (manage virtual memory)
• Cross-Memory Services, on page 4-12 (perform cross-memory transfers)

This chapter discusses only the most commonly used kernel memory services available to
device driver developers. For more information about these kernel services and additional
kernel services, see the Hypertext Information Base Library 1.1 for AIX, which is viewed
with InfoExplorer, or AIX Version 4.1 Technical Reference, Volume 5: Kernel and
Subsystems and AIX Version 4.1 Technical Reference, Volume 6: Kernel and Subsystems.

Memory Allocation Services
The following are common memory allocation services:

• xmalloc
• xmfree
• init_heap

xmalloc 
The xmalloc kernel service allocates an area of memory from either the kernel heap or the
pinned kernel heap. Memory should be allocated from the pinned heap if it is intended to
always remain pinned or remain pinned for a long period of time. If the allocated memory
can be paged out, it should be requested from the kernel heap. Any unpinned memory can
be pinned with the pin and unpin system calls at a later time if necessary.

The memory area returned by this service can be allocated on a boundary that is a power of
2 bytes from 16 bytes up to a page boundary of 4096 bytes (16-byte boundary, 32-byte
boundary, and so on up to a 4096-byte boundary.)

For requests less than one page, xmalloc rounds up the request to the next higher power
of 2. This implies that a request of just more than half a page is rounded up to one page.
xmalloc also allocates a minimum of 16 bytes at a time due to the allocation algorithm it
utilizes.

The xmalloc kernel service allocates requests differently based on the size of the request.
For requests of half a page or less (requests greater than half a page are rounded up to one
page), a vectored array is kept of elements that represent powers of 2 up to half a page.
Each element is an anchor to a list of allocated pages that are individually divided into
fragments. These fragments are equal to the size represented by the anchor array element.
Once a page is used up (all fragments are allocated), a new page is then grabbed and
divided and placed onto the appropriate list. This algorithm allows for fast allocation of areas
less than half a page because lists of fragments of the correct size have already been
allocated and are immediately ready for use by the caller. Although this method may seem
wasteful since it preallocates a whole page of fragments for each size, the worst case only
requires 8 pages to be pre-allocated with all free fragments.
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The following figure shows the layout of the array used to keep track of the pages that are
divided into the various fragment sizes.  Note that as long as a page contains a free
fragment, it is kept on the linked list for its size. Once all fragments on a page are allocated,
the page is no longer linked to the array. When one fragment comes free on a fully allocated
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For allocations of greater than half a page, xmalloc allocates enough pages to contain the
requested allocation size.

xmalloc cannot be called with interrupts disabled.

xmfree
Essentially, the xmfree kernel service frees up memory areas allocated through the
xmalloc kernel service.  In the case of allocated regions one page or greater, xmfree
merely frees up the allocated pages.

In the case of memory fragments less than one page, xmfree must first find the page to
which the fragment belongs as it resides in the vectored array as described in the
discussion of xmalloc. Once the fragment is freed, the page to which it belongs is also
freed if the freed fragment completes an entire page of freed fragments.

xmfree cannot be called with interrupts disabled.

init_heap
The init_heap kernel service allows a device driver or kernel extension to set aside an area
of memory as a heap for private use. This reserved area must be page aligned and may be
a subset of another heap.  The xmalloc and xmfree kernel services are used to allocate
and deallocate memory from this private heap.

init_heap cannot be called with interrupts disabled.

Memory Pinning Services
The following are common memory pinning services:

• ltpin
• pin
• pincode
• pinu
• ltunpin
• unpin
• unpincode
• unpinu

ltpin
The ltpin kernel service enables device drivers and kernel extensions to perform long-term
pinning of pages of kernel memory. This prevents them from being paged out. All pages
touched by the specified address range are pinned, not just the range itself. If the defined
range overlaps just slightly into one page, the entire page is pinned.

The ltpin service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the ltunpin service.

The major difference between this service and the short-term pin kernel service is that
long-term pinned pages have their corresponding paging space allocation freed but
short-term pinned pages retain their paging space allocation.

There is also a limit to the number of long-term pinned pages allowed in the system. The
maximum number of long-term pinned pages is just under 32767 pages.

ltpin cannot be called with interrupts disabled.
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pin
The pin kernel service enables device drivers and kernel extensions to perform short-term
pinning of pages of kernel memory. This prevents them from being paged out. All pages
touched by the specified address range are pinned, not just the range itself. Therefore, if the
defined range overlaps just slightly into one page, that entire page is pinned.

The pin service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the unpin service.

There is also a limit to the number of short-term pinned pages allowed in the system. The
maximum number of short term pinned pages is just under 32767 pages.

pin cannot be called with interrupts disabled.

pincode
The pincode kernel service supports long-term pinning of an entire object module’s code
and data. This service calculates the address and length of a module’s code and data and
calls the ltpin kernel service with these values to perform the actual pinning.

The pincode service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the unpincode service.

pincode cannot be called with interrupts disabled.

pinu
The pinu kernel service provides short-term pinning of memory in either user or kernel
space. This routine calls the pin kernel service after performing an attach to the user’s
address space.

The pincu service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the unpinu service.

pinu cannot be called with interrupts disabled.

ltunpin
The ltunpin kernel service unpins the memory pages long-term pinned by the ltpin kernel
service.

This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

The ltunpin kernel service cannot be called with interrupts disabled because it may need to
allocate paging space for the newly unpinned memory area.

unpin
The unpin kernel service unpins the memory pages short-term pinned by the pin kernel
service.

This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

The unpin kernel service can be called with interrupts disabled.

unpincode
The unpincode kernel service unpins a module’s code and data that was pinned by the
pincode kernel service. Once it has calculated the addresses of a module’s code and data
segments, unpincode calls the ltunpin kernel service to perform the actual unpinning.
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This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

unpinu
The unpinu kernel service unpins memory pinned by the pinu kernel service.  As in the
pinu kernel service, memory from either user or kernel space can be freed. This routine
calls the unpin kernel service to perform the actual unpin.

This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

This routine must be called with all interrupts disabled when unpinning memory in user
space. This routine can only unpin memory in kernel space if interrupts are disabled.

Memory Access Services
The following are common memory access services:

• copyin
• copyinstr
• copyout
• uiomove

copyin
The copyin kernel service copies data from user memory to kernel memory with
appropriate exception handling.

copyin cannot be called with interrupts disabled.

copyinstr
The copyinstr kernel service copies a string from user memory to kernel memory with
appropriate exception handling. This service copies up to the number of bytes specified or
until a NULL byte is reached.

copyinstr cannot be called with interrupts disabled.

copyout
The copyout kernel service copies data from kernel memory to user memory with
appropriate exception handling.

copyout cannot be called with interrupts disabled.

uiomove
The uiomove kernel service copies data between kernel memory and either user or kernel
memory as defined by a uio structure. When using cross-memory descriptors, uiomove
calls either xmemin or xmemout for the actual transfer.  Cross-memory transfers also
require a valid uio_xmem pointer to an array of xmem structures.

uiomove cannot be called with interrupts disabled.



4-6 AIX Version 4.1 Writing a Device Driver

Virtual Memory Management Services
Virtual memory describes the hierarchy of both main system memory and secondary
storage such as hard disks. This two-tier structure allows actual physical memory to be
divided and allocated to several processes at the same time. It also allows programs to
address memory far larger than the actual size of physical system memory because
secondary storage can be used as an extension of the system memory.

Virtual memory objects are often used by device drivers to represent data that can be in
either system memory or on a secondary storage device. The virtual memory address
space is divided into segments, which are actually 256MB contiguous areas of this address
space. Process addressability is managed at the segment level. These segments can then
be kept private to a specific process or can be shared among several processes.  Segments
themselves are further divided into pages, which are currently 4096 bytes.

There are several types of segments. A working segment is a segment that does not have
corresponding permanent storage space.  For example, the stack and data region for a
process are mapped to a working segment because they exist only within the context of the
existence of the process.  Once there is not enough physical memory to hold a working
segment’s pages, some of these pages must be transferred, or paged out, to paging space,
which is a temporary area of secondary storage (for example, hard disk). Once these pages
are again needed by the process, they can then be paged in, or transferred back into
system memory.

Persistent segments are mapped segments that have a corresponding permanent storage
area in secondary storage. Files on disk that are mapped are examples of mapped
segments. When a page of a persistent segment must be paged out, the actual page must
be written to secondary storage if it has changed while being mapped.  If the page has not
changed, it is merely discarded and its place in physical memory is now open for another
page to be paged in.

Client segments are persistent segments that map files remotely, such as over an NFS
mount. When pages for these types of segments are paged out, they are written out over
the network.

Virtual memory objects are often used by device drivers to do things such as mapping a file
that exists on a hard disk in secondary storage.
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The following is an example of the usual steps to create and manipulate a virtual memory
object that maps in an NFS mounted file:

#include  <sys/vmuser.h>
#include  <sys/types.h>
#include  <sys/m_types.h>

vmid_t      vmid;
vmhandle_t  demo_vm_handle;
int         type;
struct gnode *gn;
int         size;
int         num_vm_bufs;
int         rc;
extern int  demo_nfs_strategy();
caddr_t     buffer;

num_vm_bufs = 50;    /* 50 is arbitrary for the number of buf
                        structures to allocate */
                     /* demo_nfs_strategy() is the strategy 
                        routine that handles the pageouts */
rc = vm_mount(D_REMOTE, demo_nfs_strategy, num_vm_bufs);
if (rc)
     return (rc);
          . . . 
           
 

type = V_CLIENT;  /* going to work with a ”client” segment */
/* gn is a pointer to the gnode of the file to be mapped */
/* size is the size in bytes of the file to be mapped */
if (rc = vms_create(&vmid, type, gn, size, 0, 0))
     return (rc);
/* vms_create() actually returns a segment ID in vmid */

demo_vm_handle = vm_handle(vmid, 0);
/* vm_handle() actually returns a segment register value */
    . . .
           
buffer = vm_att(demo_vm_handle, 0); 
                   /* we’re just picking 0 as the offset */
/* Note that the kernel will panic if it runs out of spare
   segment registers but there should be enough to go around.
   As a general rule, a device driver should limit itself to 2 
   attaches at a time. */

/* The buffer can now be written to and read from */ 
           . . .

vm_det(buffer); 
           . . .
if (rc = vms_delete(vmid))
   return (rc);           
           . . .
vm_umount(D_REMOTE, demo_nfs_strategy);
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The kernel services used to manage virtual memory generally have names beginning
“vms_” (for example, vms_create, vms_delete,  and vms_iowait) or names beginning
“vm_” (for example, vm_handle, vm_att,  and vm_cflush.)

vms_create
The vms_create kernel service creates a virtual memory object of a specific size and type.
Several types and options are available when creating virtual memory objects.

Segments can have the following types:

V_WORKING Working storage segment
V_CLIENT Client segment
V_PERSISTENT Persistent storage segment
V_MAPPING Mapping segment

Working storage segments can have the following options:

V_UREAD Only reads are allowed in user region with access key 1
V_PTASEG Segment is a page table area segment
V_SYSTEM Segment is a system segment.
V_PRIVSEG Segment is a process private segment
V_SHRLIB Shared library segment
V_SPARSE Segment has pages sparsely populated

Persistent segments can have the following options:

V_JOURNAL Segment is also journalled
V_DEFER Segment is deferred update
V_LOGSEG Segment is used for a log
V_SYSTEM Segment is a system segment

Client segments can have the V_INTRSEG option, indicating the segment is an
interruptable segment.

There are no options for mapping segments. All parameters other than segment ID (sid) and
type should be 0.

vms_create cannot be called with interrupts disabled.

vms_delete
The vms_delete kernel service deletes a virtual memory object created through the
vms_create kernel service. Even though this service completes asynchronously, notification
of completion is given synchronously. This is because the allocated segment is not truly
freed until all paging I/O has completed. Until the segment has been marked as freed, it
remains accessible even though a successful return code may have been received.

vms_delete cannot be called with interrupts disabled.

vm_handle
The vm_handle kernel service creates a virtual memory handle for a virtual memory object,
as created by vms_create, for use by the vm_att kernel service. The handle is created
from a concatenation of the segment ID and a protection key.

vm_handle cannot be called with interrupts disabled.

vm_att
The vm_att kernel service maps a virtual memory object, created by the vms_create kernel
service, by allocating a free segment register and returning a 32-bit address made up of the
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segment register value and the offset within that segment.  This 32-bit address has the
segment register number in the upper 4 bits and the offset in the lower 28 bits.

If the system has no segment registers to allocate, it will panic.

vm_att can be called with interrupts disabled.

vm_cflush
The vm_cflush kernel service flushes out to memory all processor instruction and data
cache lines that contain the memory boundaries specified by the given address and range.

vm_cflush can be called with interrupts disabled.

vm_det
The vm_det kernel service essentially unmaps the virtual memory object originally mapped
by the vm_att kernel service.  It does so by releasing the segment register associated with
the given virtual address of the memory object.

vm_det can be called with interrupts disabled.

vm_mount
The vm_mount kernel service allocates an entry in the paging device table (PDT) for a file
system and also allocates the required buf structures for processing by the strategy routine.

vm_mount cannot be called with interrupts disabled.

vm_umount
The vm_umount kernel service removes an entry from the paging device table (PDT) for a
file system and also deallocates the required buf structures that were previously allocated
by the vm_mount kernel service. If paging activity has not yet ceased when vm_umount is
called, the service waits until all I/O has completed before completely freeing all resources.

vm_umount cannot be called with interrupts disabled.

vm_move
The vm_move kernel service will transfer data from a virtual memory object, created by the
vms_create kernel service, and a buffer pointed to by a uio structure.

vm_move cannot be called with interrupts disabled.
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The following is an example of using vm_move on a permanent hard disk file:

#include   <sys/vmuser.h>
#include   <sys/types.h>
#include   <sys/m_types.h>

vmid_t     vmid;
int        type;
int        size;
dev_t      dev_num;
int        rc;
struct uio *uiop;
      . . .

type = V_PERSISTENT;  /* we want a ”persistent” segment */
    /* dev_num is the devno of the block device on which
       the inode resides */
   /* size is the size in bytes of the file */
if (rc = vms_create(&vmid, type, dev_num, size, 0, 0))
   return (rc);
if (rc = vm_move(vmid, uiop–>uio_offset, uiop–>uio_resid,
    UIO_READ, uiop));
   return (rc);
if (rc = vms_delete(vmid));
   return (rc);
     . . .

vm_write
The vm_write kernel service initiates a page-out for all pages touched by a specified range
in a virtual memory object. The memory range is defined by a beginning address and length.
All pages touched by this range are marked for page-out.

A force parameter, applicable only to journaled segments, is provided to force a page-out on
a page even though it may have been recently modified. Typically, if a page has been
recently modified, it will most likely be modified again.  By delaying page-outs on recently
modified pages, time is saved by writing the page only after several modifications rather
than after each modification.  The force parameter overrides this process.

vm_write cannot be called with interrupts disabled.

vm_writep
The vm_writep kernel service is similar to the vm_write kernel service except that a page
range, rather than a memory range, is specified for page-outs.

No force parameter is provided.

vm_writep cannot be called with interrupts disabled.

vms_iowait
The vms_iowait kernel service waits until all page-out I/O for a virtual memory object is
complete.

vms_iowait cannot be called with interrupts disabled.

vm_release
The vm_release kernel service releases all pages touched by a specified range in a virtual
memory object. In essence, an address range is defined by a beginning address and length.
All pages touched by this range are freed.
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vm_release cannot be called with interrupts disabled.

vm_releasep
The vm_releasep kernel service will release the specified pages in a virtual memory object.
It is similar to the vm_release kernel service except that pages are specified rather than an
address range.

vm_releasep cannot be called with interrupts disabled.

Example Using Virtual Memory Management Services
The following example shows typical use of the vm_writep, vms_iowait, and vm_releasep
kernel services:

#include   <sys/vmuser.h>
#include   <sys/types.h>
#include   <sys/m_types.h>

vmid_t     vmid;
int        type;
int        size;
dev_t      dev_num;
int        pfirst;
int        npages;
int        rc;
       . . .

type = V_PERSISTENT;  /* we want a ”persistent” segment */
  /* dev_num is the devno of the block device on which
     the inode resides */
  /* size is the size in bytes of the file */
 if (rc = vms_create(&vmid, type, dev_num, size, 0, 0))
    return (rc);
      . . .

 /* pfirst is the page number of the first page to pageout */
 /* npages is the number of pages we want to pageout */
if (rc = vm_writep(vmid, pfirst, npages));
   return (rc);
rc = vms_iowait(vmid);
vms_releasep(vmid, pfirst, npages);
if (rc)
   return (rc);
      . . .
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Cross-Memory Services
The cross-memory kernel services enable device drivers to access user-mode data. This is
often required by the interrupt handler section of device drivers or when performing DMA
transfers to and from a user buffer.

The following are common cross-memory services:

• xmattach
• xmdetach
• xmemin
• xmemout
• xmemdma

The xmattach kernel service provides a descriptor to access the user-mode memory region
while the xmemin and xmemout kernel services transfer data to and from this region. The
xmdetach kernel service then deallocates resources used to access the user-mode region
and prevents further accesses to that region.

The following example shows a typical transfer of user data to a kernel buffer using the
xmemin kernel service:

#include <sys/xmem.h>

caddr_t   user_buffer;
caddr_t   local_buffer;
uint      buffer_len;
struct xmem     dp;
int       rc;

bzero(&dp, sizeof(struct xmem));
/* aspace_id field must be initialized to XMEM_INVAL */
dp.aspace_id = XMEM_INVAL;

/* user_buffer should have the address of the user buffer */
/* user_buffer_len should have the length of the user_buffer */
if (rc = xmattach(user_buffer,user_buffer_len,&dp,USER_ADSPACE))
   return (rc);

/* allocate word–aligned kernel bufr to hold copy of user data */
local_buffer = xmalloc(user_buffer_len, 2, pinned_heap);
if (local_buffer == NULL)
   return (ENOMEM);
if (rc = xmemin(user_buffer, local_buffer, buffer_len, &dp))
   return(rc);
/* The data in local_buffer can now be sent to the device
   if desired (eg. through PIO) */
    . . .

xmfree(local_buffer, pinned_heap);
xmdetach(&dp);
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xmattach
The xmattach kernel service gives a device driver access to a user buffer without having to
execute under the process that initiated the I/O. It returns a cross-memory descriptor if the
attach is successful. The xmemin and xmemout kernel services can then be used to
transfer data to and from the attached user buffer.

xmattach cannot be called with interrupts disabled.

xmdetach
The xmdetach kernel service detaches a user buffer, previously attached by the xmattach
kernel service, from a device driver. This prevents a device driver from further accesses to a
user buffer.

xmdetach can be called with interrupts disabled.

xmemin
The xmemin kernel service transfers data from an attached user buffer to a kernel buffer.
The device driver performing the transfer should have previously attached to the user buffer
using the xmattach kernel service.

xmemin can be called with interrupts disabled.

xmemout
The xmemout kernel service transfers data from a kernel buffer to an attached user buffer.
The device driver performing the transfer should have previously attached to the user buffer
using the xmattach kernel service.

xmemout cannot be called with interrupts disabled.

xmemdma
The xmemdma kernel service prepares a page for DMA I/O or processes a page after DMA
I/O is complete. Even though xmemdma can be called with interrupts disabled, the page
being processed must be in memory and either pinned or in the pager I/O state.

The following flags are used when preparing the page for DMA I/O:

XMEM_HIDE Flushes the cache and invalidates the page if this is the first hide for
the page. (On a PowerPC machine, this flag instructs the kernel
service to return the calculated real address for the page and if the
page is not read-only, set the modified bit.)

XMEM_ACC_CHK Checks the page protection bits for this page before the flush and
hide.

XMEM_WRITE_ONLY When used with the XMEM_ACC_CHK flag, indicates that page
access is read-only and DMA transfers from this page will only be
outward.

The following flag processes a page after DMA I/O:

XMEM_UNHIDE Decrements the hide count on this page. If this is the last unhide and the
page is not in the pager I/O state, processes waiting on the page are taken
off the wait queue and the page’s modified bit is set unless it was a
read-only page. (On a PowerPC machine, this flag causes the kernel
service to return 0.)

xmemdma can be called with interrupts disabled.
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The following is an example of the use of the xmemdma kernel service to unhide a page
after a DMA transfer using the d_master kernel service:

int         channel_id;
caddr_t     buf_addr;
int         buf_size;
struct xmem xmem_buf;
caddr_t     dma_addr;
      . . .
/* We’re assuming that the channel_id, buf_addr, buf_size,
   xmem_buf,and dma_addr have already been setup */
 d_master(channel_id, DMA_READ, buf_addr, buf_size, &xmem_buf,
          dma_addr);
 xmemdma(&xmem_buf, buf_addr, XMEM_UNHIDE);
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Chapter 5. Synchronization and Serialization

It is often necessary for a device driver to synchronize its access to a resource that is
shared with a device or with kernel routines executing in other contexts. Kernel routines in
all contexts share the same kernel segment and all data structures within it. Drivers for
many devices share the same I/O space and system bus. A device driver’s routines all
access the same device, so they must synchronize their access to that device.

To synchronize access with another device, either the driver may poll the device by
repeatedly checking to see if the resource is available, or the device may notify the driver
that the resource is available by sending an interrupt whose handler posts an event that the
driver is waiting for.

If a driver routine accesses a resource that it shares with a kernel routine concurrently
executing in another context, then both routines must address various concurrency issues.
For example, you want to avoid the following conditions:

race conditions Multiple contexts access the same shared resource with different results
depending on the order in which the accesses are made. (Accesses to a
shared resource are serialized if they are coordinated so there is no race
condition.)

deadlock Each context awaits a notification the other never sends.

livelock Each context polls a condition the other never sets. (This is sometimes
called a type of deadlock.)

starvation Other contexts monopolize access to the shared resource.

A portion of a routine that accesses a shared resource, a routine’s critical section, makes
the access atomic relative to routines executing in other contexts whenever it synchronizes
its own access to that resource with respect to any access attempts by other routines, so
that all accesses are serialized (made one after the other). A routine synchronizes access
with other routines either by using semaphores (such as locks) or by invoking monitors,
which are routines that ensure atomic access.

A routine is reentrant if its critical sections make resource accesses that are atomic relative
to the same routine executing in some other context. In other words, a routine is reentrant if
it can safely execute in many contexts concurrently.

If a routine maintains state information somewhere (for example, in static or global data) so
that a subsequent call to the same routine would access information modified by a previous
call, then the routine is not reentrant: the state information is the shared resource, and that
portion of the routine that accesses the information is that routine’s critical section. If a
routine enables a caller to access any resources that can be shared, such as by returning a
pointer to static or global data, then the routine itself is not reentrant; it cannot safely
execute in more than one context.

Recall that an interrupt handler routine must be reentrant because a device may generate
an interrupt while another interrupt (possibly from the same device through another system
processor) is being handled. In AIX, device driver routines on the call side also must be
reentrant because a call-side driver routine executes in the context of a kernel thread whose
execution can be preempted in favor of another thread of greater priority, which might be
executing the same call-side driver routine.

For information on making interrupt-side routines reentrant, see Chapter 3, “Interrupts.”
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Timer Services
A driver routine can poll a device actively by checking the shared resource’s availability and
then doing something else (keeping a system processor), or it can poll a device by checking
and then relinquishing its system processor for a certain period of time (going to sleep).
Because the time between resource availability checks with active polling depends on the
speed of a system processor, and because that time period may not be compatible with
device being polled, timer-based polling is more robust.

Each processor that AIX supports has a decrementor that periodically generates timer
interrupts whose handler, among other things, can invoke routines specified to be called
once a certain amount of time has passed. The kernel services and data structures
associated with timer interrupt handler are timers. There are basically two kinds of timers:
watchdog timers and real-time timers. A driver routine sets up a timer by specifying a
callback routine, which is an interrupt-side routine that is to be invoked by the timer interrupt
handler. The driver routine also specifies when to invoke the callback routine as either an
absolute time (from January 1, 1970) or a time relative to when the timer is started.

Watchdog Timers
Driver routines typically use timers to check if device I/O requests had successfully
completed. A watchdog timer may be satisfactory to poll a device, as it is fairly simple to use
and has low overhead. However, it involves writing an interrupt-side callback routine that is
little more than a timed “go to” routine: a watchdog timer handler receives no user defined
parameters. Also, a watchdog timer can only be set to the nearest second.

Here is an example of how to set up a watchdog timer. The following code sections are
written to augment the sample device driver shown in Chapter 1, “Device Driver Overview.”

The callback routine, which is invoked any time the watchdog timer expires, executes on the
interrupt-side; so it will have to be in the device driver’s bottom half. In other words, the
callback routine will have to be explicitly pinned in RAM.

Here is the bottom half, xyz_bot.c:

#include <sys/types.h> /* for dev_t and other types */
#include <sys/trchkid.h> /* for trace hook macros */
/*************************************************************
 WATCHDOG TIMER CALLBACK ROUTINE
This callback routine is invoked every time a timer expires.
This executes in the context of decrementer interrupt handler.
*************************************************************/
void watchdog_callback()
{
TRCHKL1T(HKWD_USER1, 0xb);
}

Since the callback routine has no parameters, it must access some shared resources to do
anything useful. It may read an adapter’s registers to poll a device, or it may see if some
other resource is available for use. Portions of the callback routine that access such shared
resources are critical sections shared among threads and interrupt handlers and require
appropriate synchronization.

The driver’s top half, called xyz_top.c, is the same as the sample driver in Chapter 1 with
several additions.

Add the following to the declaration section:
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#include <sys/malloc.h> /* for xmalloc() */

/* for watchdog timer support */
#include <sys/watchdog.h> /* for watchdog structure */
extern void watchdog_callback();
struct watchdog *watchp;

Note that the pointer to the watchdog timer structure is global and is therefore a shared
resource requiring synchronization if the top half were to be reentrant. For simplicity, access
to the pointer is not serialized in this example.

Add the following to the xyzopen entry point:

watchp = (struct watchdog *) xmalloc(sizeof(struct watchdog),
0, pinned_heap);

if(watchp == (struct watchdog *) NULL)
{ setuerror(ENOMEM); /* failed, no space on pinned heap */
 return(–1); /* setuerror() used: there is no ublock access */
}

watchp–>func = (void (*)(void *))watchdog_callback;
w_init(watchp);

Add the following to the xyzclose entry point:

w_stop(watchp);
w_clear(watchp);
xmfree(watchp, pinned_heap);

Add the following to the xyzread entry point:

watchp–>restart = 3; /* 3 seconds */
w_start(watchp);

Add the following to the CFG_INIT portion of the xyzconfig entry point:

if((return_code = pincode(watchdog_callback)) != 0)
{ setuerror(return_code);
 return(–1);
}

And, add the following to the CFG_TERM portion of the xyzconfig entry point:

if((return_code = unpincode(watchdog_callback)) != 0)
{ setuerror(return_code);
 return(–1);
}

The corresponding stanzas of the makefile need to be changed:

xyz: xyz_top.o xyz_bot.o
ld –e xyzconfig –o xyz –bI:$(KSYSLIST) –bI:$(SYSLIST) 

xyz_top.o xyz_bot.o # have on one line

xyz_top.o: xyz_top.c
cc –c –D_ALL_SOURCE –D_POSIX_SOURCE –D_KERNEL xyz_top.c

xyz_bot.o: xyz_bot.c
cc –c –D_ALL_SOURCE –D_POSIX_SOURCE –D_KERNEL xyz_bot.c

The user program, aprogram, only needs to have “sleep(5);” placed after the call to
read so that the timer can go off before the program terminates.

The following sample trace report shows that the callback routine (hookdata 0xB) executed
a little less then three seconds after the call to xyzread (hookdata 0x9):
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 trace   –j010 –l –l –s –a  
  
 ID  PROCESS NAME   I SYSTEM CALL     ELAPSED   APPL    SYSCALL KERNEL INTERRUPT
  
 001 trace   0.000000      trace   ON channel 0 
 010 trace  20.121544      UNDEFINED trace   ID idx 0x2100 trace  id 0010 
     hookword 10E0000 type 0E 
     hookdata 0000 00000001 00630000 00000001 2FF97F1C 00000000 
 010 trace  26.447790      UNDEFINED trace   ID idx 0x2154 trace  id 0010 
     hookword 10E0000 type 0E 
     hookdata 0000 00000001 00630000 00000003 2FF97F1C 00000000 
 010 trace  26.447795      UNDEFINED trace   ID idx 0x2170 trace  id 0010 
     hookword 10A0000 type 0A 
     hookdata 0000 00000005  
 010 trace  63.647987      UNDEFINED trace   ID idx 0x22c4 trace  id 0010 
     hookword 10E0000 type 0E 
     hookdata 0000 00000007 00630000 00000003 00000000 00000000 
 010 trace  63.648657      UNDEFINED trace   ID idx 0x22e0 trace  id 0010 
     hookword 10E0000 type 0E 
     hookdata 0000 00000009 00630000 2FF97DC0 00000000 00000000 
 010 trace  66.057338      UNDEFINED trace   ID idx 0x2314 trace  id 0010 
     hookword 10A0000 type 0A 
     hookdata 0000 0000000B  
 010 trace  70.649700      UNDEFINED trace   ID idx 0x2348 trace  id 0010 
     hookword 10E0000 type 0E 
     hookdata 0000 0000000A 00630000 2FF97DC0 00000000 00000000 
 010 trace  70.649833      UNDEFINED trace   ID idx 0x2364 trace  id 0010 
     hookword 10E0000 type 0E 
     hookdata 0000 00000008 00630000 00000000 00000000 00000000 
 002 trace  77.524587      trace   OFF channel 0

There are many similarities between routines using watchdog timers and those using
real-time timers. This is shown in the following discussion of real-time timers.

Real-Time Timers
If the device requires setting a timer to within something finer than a second, or if the
callback routine needs user defined parameters, then the driver will use real-time timers,
which make use of Timer Request Blocks (TRBs) as defined in the file
/usr/include/sys/timer.h.

The real-time kernel services are:

talloc Allocates a TRB

tstart Submits the timer request (to place the TRB on a timer queue)

tstop Removes the timer request

tfree Frees up resources allocated for the TRB

Here is an example of a way to set up a real-time timer. The following code sections are
written to augment the sample device driver shown in Chapter 1, “Device Driver Overview.”

As with watchdog timers, the callback routine, specified to be called once the timer expires,
executes on the interrupt-side and so will have to be in the device driver’s bottom half.

Here is the bottom half, xyz_bot.c:
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#include <sys/types.h> /* for dev_t and other types */
#include <sys/errno.h> /* for errno declarations */
#include <sys/trchkid.h> /* for trace hook macros */

/* for timer support */
#include <sys/timers.h> /* for itimerspec, includes time.h */
#include <sys/timer.h> /* for TRBs */

/*************************************************************
 TIMER CALLBACK ROUTINE
 This callback routine is invoked every time a timer expires.
 This executes in the context of decrementer interrupt handler.
*************************************************************/
void timer_callback(struct trb *timer_req_blk_ptr)
{
TRCHKL2T(HKWD_USER1, 0xb, timer_req_blk_ptr–>t_func_sdata);
}

The callback routine, timer_callback, has a TRB, which can contain some user supplied
data, passed to it; in this case t_func_sdata is a signed integer containing, say, the
device number. Any data that can’t be passed as a parameter will have to be globally
accessible; portions of a routine that access such shared resources are critical sections
shared among threads and interrupt handlers and require appropriate synchronization.

The driver’s top half, called xyz_top.c, differs from the sample driver in Chapter 1 in
several ways described in the following discussion. One difference is the include files and
declarations would include:

/* for timer support */
#include <sys/timers.h> /* for itimerspec, includes time.h */
#include <sys/timer.h> /* for TRBs */
#include <sys/m_intr.h> /* for INTTIMER priority */

extern void timer_callback();
struct trb *trbp; /* single pointer to TRB structure */

Note that the pointer to TRB is global and is therefore a shared resource requiring
synchronization if the top half is to be reentrant. For simplicity, access to the pointer is not
serialized in this example.

Here is what is added to the entry point xyzopen:

if((trbp = talloc()) == (struct trb *) NULL)
{ setuerror(ENOMEM); /* talloc failed, no space on pin heap */
 return(–1); /* setuerror() used: there is no ublock access */
}

trbp–>id = thread_self(); /* or getpid() */
trbp–>timerid = TIMERID_REAL;
trbp–>eventlist = –1; /* no events being waited on */
trbp–>func = (void (*)(void *))timer_callback;
trbp–>t_func_sdata = (int) devno; /* or whatever data */
trbp–>ipri = INTTIMER;

Note that talloc allocates space from the pinned heap. The fields of the TRB listed are
the only ones a device driver would set; even so, most fields only need to be filled out if the
callback routine requires them. id, timerid, eventlist, t_func_sdata are all for use
by the callback routine. The callback routine, timer_callback, listed previously, currently
makes no use of any of these fields.



5-6 AIX Version 4.1 Writing a Device Driver

Here is what is added to the entry point xyzclose:

tstop(trbp);
tfree(trbp);

Here is what is added to the entry point xyzread:

struct timespec threeSec;
struct itimerspec timeStruct;
...
threeSec.tv_sec = 3; /* 3 seconds */
threeSec.tv_nsec = 0; /* and no milliseconds */

timeStruct.it_interval = threeSec;
timeStruct.it_value = threeSec;

trbp–>timeout = timeStruct;

tstart(trbp);

So, if a program issues a read on this device, it starts a timer that causes the callback
routine to execute three seconds later.

Here is what is added to the CFG_INIT case section of xyzconfig:

if((return_code = pincode(timer_callback)) != 0)
{ setuerror(return_code);
return(–1);
}

This pins the bottom-half, containing the callback routine, in RAM.

Here is what is added to the CFG_TERM case section of xyzconfig:

if((return_code = unpincode(timer_callback)) != 0)
{ setuerror(return_code);
return(–1);
}

This enables the pages containing the bottom half to be subject to page replacement.

The makefile and aprogram.c are the same as in the watchdog timer example.

Now, when the kernel is extended, and the user program, aprogram, is run, a system trace
shows that the callback routine executes three seconds after read is called:

010 trace 22.459560 UNDEFINED TRACE ID idx 0x21d4 traceid 0010
hookword 10E0000
type 0E
hookdata 0000 00000009 00630000 2FF97DC0 00000000 00000000

010 trace 25.459661 UNDEFINED TRACE ID idx 0x2210 traceid 0010
hookword 10E0000
type 0E
hookdata 0000 0000000B 00630000 00000000 00000000 00000000

Event Notification
An alternative to polling a device for when some data is available, or when some status is
achieved, is to make use of any interrupts that the device generates and notify the driver
that an interrupt was processed. In this case, the driver routine registers itself for an event
and causes its thread to relinquish the system processor. Whenever the event is posted, the
kernel awakens the driver’s thread and the driver routine resumes execution.
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The kernel service et_wait causes the calling thread to relinquish the system processor until
that thread receives an event. The kernel service et_post enables a kernel process to post
an event to some thread, so that the thread can resume execution. The event is a bit in a bit
mask that is passed as a parameter to each call.

The following is an example of adding event notification to the real-time timer sample code
given previously.

In xyz_bot.c, add to the declarations:

/* for event handling */
#define THE_EVENT (1 << 31) /* this is the high order bit */

There is an event mask that can be used to ensure that an event is not reserved for the
base operating system kernel. Be aware that this event is specific to a 32-bit system.

Add the following line to the callback routine:

et_post(THE_EVENT, timer_req_blk_ptr–>id);

The field id, in the TRB, contains the ID of the thread that had set the timer.

In xyz_top.c add to the declarations:

/* for event handling */
#include <sys/sleep.h> /* for EVENT_SIGRET flag */
#define THE_EVENT (1 << 31) /* this is a high order bit */

And add the following to the xyzwrite entry point:

et_wait(THE_EVENT, THE_EVENT, EVENT_SIGRET); /* clear event 
                                             upon receipt */
TRCHKL1T(HKWD_USER1, 0x0a);

Keep aprogram.c the same as in Chapter 1. A portion of the trace looks like:

010 trace 18.261389 UNDEFINED TRACE ID idx 0x21c8 traceid 0010
hookword 10E0000
type 0E
hookdata 0000 0000000A 00630000 2FF97DC0 00000000 00000000

010 trace 21.261233 UNDEFINED TRACE ID idx 0x21fc traceid 0010
hookword 10E0000
type 0E
hookdata 0000 0000000B 00630000 00000000 00000000 00000000

010 trace 21.261919 UNDEFINED TRACE ID idx 0x2218 traceid 0010
hookword 10A0000
type 0A
hookdata 0000 0000000A

The trace shows entry into xyzwrite, the callback, and then the completion of xyzwrite.

Instead of posting events to a driver routine in a thread, a device driver may need to wait on
an event and meanwhile make a shared resource available for another routine to lock. To do
so, the driver can invoke the kernel service e_sleep_thread, which takes a pointer to an
event and a pointer to a lock as parameters. If the event is to be posted from the interrupt
side, be careful that the pointers refer to data in pinned memory .

An interrupt handler (or some other routine) may call the kernel service e_wakeup, to cause
any threads sleeping on this event to resume execution and reacquire a lock on a shared
resource.

If multiple locks are to be released and then reacquired, a driver will use the kernel services,
e_assert_wait, e_block_thread, and e_clear_wait and e_wakeup instead.
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For more information on event handling services, see AIX Version 4.1 Technical Reference,
Volume 5: Kernel and Subsystems and AIX Version 4.1 Technical Reference, Volume 6:
Kernel and Subsystems.

Serialization Services
Sharing data among multiple concurrent processes causes an inherent problem with
maintaining data consistency. Consider, for example,  a doubly linked list structure. In order
to remove an element from this list, it is necessary to update pointers in both the preceding
and succeeding the elements. During this update sequence the list is in an inconsistent
state. If additional process activity to add or remove elements is allowed to proceed while in
this state, the results would be unpredictable. Access could be serialized through the use of
locks.

Device drivers have the following types of critical code sections:

• Critical code sections shared among process threads. (Interrupt disabling is not required.)

• Critical code sections shared among process threads and interrupt handlers. (Interrupt
disabling is required.)

Uniprocessor (UP) Serialization
On a uniprocessor, concurrent access to shared data is achieved through preemption. A
process can be preempted by another higher priority process, or by an interrupt routine.

Protection for access to data shared between process threads is provided by using locks.
Protection for access to data shared between the base level and the interrupt level is
provided by disabling interrupts.

Multiprocessing (MP) Serialization
Multiprocessing involves the use of more than a single processor. AIX implements shared
memory symmetric multiprocessing, that is, all processors are functionally equivalent and
can perform I/O and computations. AIX manages a pool of identical processors, any of
which may be used to control I/O devices or reference any memory unit. Conflicts between
processors attempting to access the same data at the same time are resolved by hardware
instruction synchronization. Conflicts in access to shared memory structures are resolved by
software synchronization techniques; most notably locking.

The multiprocessing discussion introduces the following new terminology:

Master Processor
The default processor for of funneled code execution. This is usually the
IPL boot processor.

Funneling Funneled code runs only on the master processor. This enables a UP driver
to run unchanged by funneling its execution through one specific processor
(the Master processor).

MP-safe Device driver code that can run on any processor. The code for the device
driver provides for locks to serialize the device drivers execution. This
provides for a coarse level of locking to enable parallel execution.

MP-efficient Device driver code that can run on any processor. The code for the device
driver provides for locks to serialize access to devices and data structures.
This provides for a finer level of locking to further enable parallel execution.
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Masking interrupts or disabling the processor by calling the i_disable kernel service to
serialize with an interrupt handler is no longer sufficient with symmetric multiprocessing
(except for funneled code). The I/O is symmetric and interrupts can be routed to any of the
processors in the complex; masking interrupts will not prevent the interrupt routine from
executing simultaneously on another processor. Serialization in a symmetric multiprocessor
system, therefore, requires the use of locks in addition to using i_disable.

Lock Overview
A number of serialization techniques are available defined by the intent to serialize access
to critical code sections, or data items. Locking critical sections of code is a coarse locking
level that supports MP-safe program execution. Locking at the data level is a finer locking
level that supports either MP-safe or MP-efficient program execution. Additionally, atomic
operations such as fetch_and_add and compare_and_swap can be used as an
alternative to locks to provide reliable access to a single shared variable for reading or
writing.

Lock contention wait can result in a process spinning on a busy lock or sleeping until the
lock is granted.

AIX provides for the following types of locks:

Simple locks Spin locks that provide exclusive ownership and are not recursive. These
locks are used for serialization among threads, serialization among threads
and interrupt handlers, and serialization among threads and interrupt
handlers.

Complex locksSleep locks that provide read or write access and are recursive on request.
These locks are used only for serialization among threads.

Lockl locks Sleeping, mutual exclusive locks provided for compatibility with AIX Version
3. These should not be used for newly written code.

Locking the global kernel_lock is not recommended (discouraged) because this lock has
the potential to block the system scheduler. Also, this lock may be removed at some future
time.

To support collecting and monitoring statistics about lock activity, AIX implements lock
instrumentation. This function is activated or deactivated on an IPL boot basis via the
bosboot command. Lock instrumentation criteria requires that locks be allocated before
being used and deallocated when no longer needed. Instrumentation is not provided for
lockl and unlockl lock services. Allocation calls and deallocation calls result in no operation
if instrumentation is disabled.

Device Driver Lock Models
The device driver lock model in an MP environment can take on one of the forms previously
mentioned (funneled, MP-safe, or MP-efficient). The implementation model used by the
device driver needs to be communicated to the kernel for the MP-safe or MP-efficient
models. This is done by setting necessary flags in the appropriate data structures
supporting the devswadd, i_init, and iodone kernel services. The funneled implementation
is assumed by default.

The funneled model is essentially a UP implementation. This is appropriate for low
throughput devices or migrating device drivers from the UP environment. This is the
implementation model that is assumed if no changes are made to an existing UP device
driver migrated to an MP environment. Serialization of critical code sections is accomplished
by using the lockl and unlockl kernel services for sections shared among threads, and the
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i_disable and i_enable kernel services for sections shared among threads and interrupt
handlers.

Although lockl locks are provided for compatibility with earlier releases, new code written
for AIX Version 4.1 should use simple locks instead. This enables gathering lock
instrumentation statistics for these locks.

The MP-safe model is intended for medium throughput devices and provides a coarse level
of MP serialization without the complexity and overhead of MP-efficient implementation.
Simple lock kernel services are provided for both serialization of critical sections shared
among threads and serialization of critical sections shared among threads and interrupt
handlers. This implementation enables critical sections of code to run on any processor in
the complex, but not at the same time. The locking granularity is usually a single global lock
at the device driver level.

The MP-efficient model is intended for high throughput devices by optimizing the parallel
execution capabilities of an MP processor. A finer level of locking capability is available by
using a hierarchy of locks based on data access serialization. Complex lock kernel services
are provided for shared read and exclusive write access to data structures shared among
multiple-thread code sections. Simple lock kernel services are provided for serialization
among thread and interrupt handler code sections.

The implementation model used depends on such factors as performance needs and
whether the device driver is being migrated from a UP environment. If designing, or moving
to an MP-safe or MP-efficient model, the recommendation is to start by using simple locks
(a single global lock initially) and gradually refine the serialization as needed after identifying
all the data structures shared between the top and bottom half of the driver. Also, analysis
of the lock statistics provided by lock instrumentation can be used to identify contention
bottlenecks that may point out the need for additional locking or the need for the read and
write locking capability provided by complex locks.

For a complete discussion of the MP locking considerations for a device driver see
“Understanding Multiprocessor-Safe Device Drivers” in AIX Version 4.1 Kernel Extensions
and Device Support Programming Concepts.

MP-Safe Coding Sample
/* Skeleton code sample using the following lock related    */
/* kernel services:                                         */
/*                                                          */
/* lockl()            – conventional–lock lock request      */
/* lock_alloc()       – allocate simple lock                */
/* simple_lock_init() – initialize simple lock              */
/* lock_free()        – release simple lock                 */
/* unlockl()          – conventional–lock unlock request    */
/* devswadd()         – devsw table lock model options      */
/*                                                          */
/* (driver configuration lock definition and use)           */
...
lock_t config_lock ={LOCK_AVAIL};  /* define lockl lock     */
Simple_lock dd_lock;               /* define Simple MP lock */
...
int
dd_config(int cmd,
 struct uio *uiop)
{ /* start dd_config() */
 struct devsw dd_devsw;
 int rc;
 ...
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 rc = lockl(&config_lock, LOCK_SHORT); /* dd_config lock */
 if (rc != LOCK_SUCC)
 return(EINVAL);
 lock_alloc(&dd_lock,        /* allocate Simple MP lock */
            LOCK_ALLOC_PIN,
            DD_LOCK,
             –1);
 simple_lock_init(&dd_lock); /* initialize Simple MP lock */
 ...
  switch(cmd)
 {
   case CFG_INIT:
   {
     dd_devsw.d_open = dd_open;
     dd_devsw.d_close = dd_close;
     dd_devsw.d_read = dd_read;
     dd_devsw.d_write = dd_write;
     dd_devsw.d_ioctl = dd_ioctl;
     dd_devsw.d_strategy = dd_strategy;
     dd_devsw.d_ttys = 0;
     dd_devsw.d_select = nodev;
     dd_devsw.d_config = dd_config;
     dd_devsw.d_print = nodev;
     dd_devsw.d_dump = nodev;
     dd_devsw.d_mpx = nodev;
     dd_devsw.d_revoke = nodev;
     dd_devsw.d_dsdptr = NULL;
     dd_devsw.d_selptr = NULL;
     dd_devsw.d_opts = DEV_MPSAFE;    /* register as MP SAFE */
     rc = devswadd(devno,&dd_devsw);  /* devsw table entry   */
     ...
    } /* end case CFG_INIT */
   break;
   case CFG_TERM:
   {
     ...
     lock_free(&dd_lock);            /* release MP lock        */
      ...
   } /* end case CFG_TERM */
   break;
 
  } /* end switch (cmd) */
 ...
 unlockl(&config_lock);          /* unlock dd_config lock     */
  return(SUCCESS);
} /* end dd_config() */
/* Skeleton code sample using the following lock related     */
/* kernel services:                                          */
/*                                                           */
/* simple_lock()   – set simple lock                         */
/* simple_unlock() – unlock simple lock                      */
/*                                                           */
/*  (thread –– thread process serialization)                 */
/*                                                           */
int
dd_read (dev_t devno, struct uio *uiop)
{ /* start dd_read() */
 simple_lock(&dd_lock);    /* set simple lock                */
 ...                       /* (critical section)             */ 
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 simple_unlock(&dd_lock);  /* unlock simple lock             */
 return(SUCCESS);
} /* end dd_read */
/* Skeleton code sample using the following lock related     */
/* kernel services:                                          */
/*                                                           */
/* disable_lock()  – disable interrupts and set simple lock  */
/* unlock_enable() – unlock simple lock and enable interrupts*/
/*                                                           */
/* (thread –– interrupt process serialization)               */
/*                                                           */
int
dd_intr (void)
{ /* start dd_intr() */
 int old_level;        /* interrupt priority level save word */
 ...
 old_level = disable_lock(CURR_LEVEL, /* disable interrupts & */
                          &dd_lock);  /* set simple spin lock */
 ...                                  /* (critical section)   */
 unlock_enable(old_level,             /* unlock simple lock & */
               &dd_lock);             /* enable interrupts    */
 return(SUCCESS);
} /* end dd_intr */
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MP-Efficient Coding Sample
/* Skeleton code sample using the following lock related     */
/* kernel services:                                          */
/*                                                           */
/* lockl()           – conventional–lock lock  request       */
/* lock_alloc()      – allocate Complex lock                 */
/* lock_init()       – initialize Complex lock               */
/* lock_free()       – release Complex lock                  */
/* unlockl()         – conventional–lock unlock request      */
 /*                                                           */
 /* (driver configuration lock definition and use)            */
...
lock_t config_lock = {LOCK_AVAIL};  /* dd_config lock        */
struct {               /* Adapater Control Block structure   */
   Complex_lock adapter_lock;       /* R/W Adapter lock      */
   struct Device_Ctl *next_device   /* device structure chain*/
} Adapter_Ctl;
struct {               /* Device Control Block structure     */
   Complex_lock device_lock;        /* W/Exclusive Device lock*/
    struct statistics device_stats; /* performance statistics */
   short dev_minor_no;             /* Device minor number    */
} Device_Ctl;
int
dd_config(int cmd,
          struct uio *uiop)
{ /* start dd_config() */
  /*
   * Use lockl operation to serialize the execution of the
    * config commands.
   */
  if ((rc = lockl(&config_lock, LOCK_SHORT)) != LOCK_SUCC) {
        return(EBUSY);
  }
  switch(cmd) {
      case CFG_INIT:
      {
      ...
      /*
          *  Define the locks in the adapter/device blocks
       */
         lock_alloc(&Adapter_Ctl.adapter_lock,
                    LOCK_ALLOC_PIN,
                    ADAPTER_CTL_LOCK,
                    –1);
         lock_init(&Adapter_Ctl.adapter_lock,
                   TRUE);
         lock_alloc(&Device_Ctl.device_lock,
                    LOCK_ALLOC_PIN,
                    DEVICE_CTL_LOCK,
                    Device_Ctl.dev_minor_no);
         lock_init(&Adapter_Ctl.adapter_lock,
                   TRUE);
         ...
      }  /* end case CFG_INIT */
      break;
      case CFG_TERM:
      {
       /*
        * Free the locks in the adapter/device control blocks
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        */
         ...
         lock_free(&Adapter_Ctl.adapter_lock);
         lock_free(&Device_Ctl.device_lock);
         ...
      }  /* end case CFG_TERM */
      break;
      ...
  }
 unlockl(&config_lock);      /* unlock dd_config lock        */
 return (SUCCESS);
} /* end dd_config() */
/* Skeleton code sample using the following lock related     */
/* kernel services:                                          */
/*                                                           */
/* lock_read()  – lock Complex lock for shared read          */
/*                         – or –  write exclusive access    */
/* lock_write() – lock Complex lock for w/exclusive access   */
/* lock_done()  – release Complex lock                       */
/*                                                           */
/* (thread – thread process serialization only)              */
/*                                                           */
int
dd_ioctl(dev_t dev, int cmd, caddr_t arg, uint flag,
         chan_t chan, caddr_t  ext)
{
  int rc;                               /* return code        */
  ...
  /*
   * Lock adapter lock in shared read access (this is done to
   * protect against removal of device structure)
   */
    lock_read(&Adapter_Ctl.adapter_lock);
  ...
  switch(cmd) {
  /*
   * Return current device performance statistics
   */
        case DD_GET_STATS:
        {
         ...
        /*
         * Lock device control block for read access to gather
         * statistics for caller
         */
          lock_read(&Device_Ctl.device_lock);
         ...               /* (critical section)              */
          lock_done(&Device_Ctl.device_lock);
         rc = (SUCCESS);
         break;
        }
  /*
   * Update device performance statistics
   */
        case DD_UPDATE_STATS:
        {
         ...
        /*
         * Lock device control block for write access to update
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         * statistics for caller
         */
         lock_write(&Device_Ctl.device_lock);
         ...               /* (critical section)              */
          lock_done(&Device_Ctl.device_lock);
         rc = (SUCCESS);
         break;
        }
  ...
  }
  lock_done(&Adapter_Ctl.adapter_lock);
  return(rc);
}
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Chapter 6. Device Configuration Methods

The dynamically loadable and unloadable aspect of the AIX Version 4.1 kernel requires that
all device drivers have configuration methods to support the ability to load and unload them
from the kernel. Configuration methods are sets of executables including a Define method,
a Configure method, a Change method, an Unconfigure method, and an Undefine method.
A Configure method is part of a set of configuration methods. Be careful to not confuse
these terms. AIX Version 4.1 also has provisions for a Stop method and a Start method but
these are seldom needed in the case of device drivers.

The System Device Hierarchy figure shows how relationships of devices to other devices on
the system can be seen as a tree of parent-child relationships. Parents detect their children
and then execute the appropriate configuration methods to introduce them to the system.
These methods will then load the appropriate device drivers and make the device available
for use.

The system’s Configuration Manager (started by the cfgmgr command) actually oversees
the entire configuration process by starting configuration methods, interpreting errors, and
managing the configuration of child devices.

System
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Device States
The system considers each device to be in one of several different states indicating the
device’s availability for use. The state of each device is stored in a database by the Object
Data Manager (ODM). There are several databases used to maintain the configuration data
for each device. The following is a list of states and their meanings to the system.
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Undefined The device is not known to the system. There is no information about the
device in the ODM database

Defined The device is known to the system but currently does not have its device
driver loaded and is therefore not available for use

Available The device has its device driver loaded and is available for use

The various configuration methods will take a device from one state to another by detecting
any attached devices, manipulating the databases, and loading or unloading the appropriate
device driver. The names of a device’s configuration methods are stored in the device’s
entry in the Predefined Device (PdDv) database.

The Device States and Methods figure shows how various methods change the state of a
device.

Undefined
   State

Defined
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Available
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Configure
Method

Undefine
Method

Unconfigure
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Define
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Device States and Methods

ODM Configuration Databases
The databases used by the ODM (Object Data Manager) include the Predefined Devices
(PdDv), Predefined Attributes (PdAt), Predefined Connections (PdCn), Customized Devices
(CuDv), Customized Attributes (CuAt), Customized Dependencies (CuDep), Customized
Device Drivers (CuDvDr), Customized Vital Product Data (CuVPD), and Config Rules
(Config_Rules) object classes. The actual database files exist in the directories
/etc/objrepos and /usr/lib/objrepos. The databases keep track of the devices defined to
the system, the relationships among devices, and the various attribute values used to
configure each device. The purpose of the various object classes is explained in the
following list:

PdDv Contains definitions for the entire set of devices that could be
supported by the system

PdAt Contains attributes for the devices listed in PdDv

PdCn Contains the supported connection points for parent-child devices

CuDv Contains definitions for devices that have been introduced to the system
and may contain devices that are in either the DEFINED or AVAILABLE
state

CuAt Contains the attributes required by the devices in CuDv
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CuDep Contains devices that are dependent on other devices

CuDvDr Contains the major numbers of drivers loaded into the kernel as well as the
device number (major, minor) of each device

CuVPD Contains the Vital Product Data of a device if it contains such data

Config_Rules Contains a list and order of config methods to be run

Several commands and system calls exist to support manipulation of the various
configuration databases. The commands include odmget, odmadd, odmdelete,
odmchange, and odmshow. For more information on these commands, see the
AIX Version 4.1 Commands Reference.  For a detailed description of the individual fields for
the object classes, see reference information for the object classes in AIX Version 4.1
Technical Reference, Volume 6: Kernel and Subsystems.

The odmshow command is useful for displaying the format of the various databases.

The odmget command is useful for extracting current entries in each of the databases.
These examples can then be used as templates for new entries that can be added with the
odmadd command. When writing a new device driver package, new entries only need to be
written for the PdDv, PdAt, PdCn, and possibly Config_Rules object classes.

The odmadd and odmdelete commands are useful for adding or deleting any new entries.

The system calls available for manipulating the configuration databases, usually called from
within configuration methods, include odm_initialize, odm_add_obj, odm_rm_obj,
odm_change_obj, odm_get_first, odm_get_obj, and odm_terminate.  For a detailed
explanation of these and other system calls designed for manipulating the ODM databases,
see AIX Version 4.1 Technical Reference, Volume 2: Base Operating System and
Extensions. The various system calls will typically be used by the various configuration
methods to view, add, change, and remove objects from the configuration databases.

Define Methods
Devices are first introduced to the system via a define method. A generic define method
(/usr/lib/methods/define) on the system can be used for many devices. This method is
designed to cover a wide variety of devices, but if a specific device requires special
processing, a new specific define method will have to be written for it.

In general, a define method will take as parameters, the name of the new device, its class,
subclass, and type, the name of its parent, and the new device’s connection point. The
define method will then verify these parameters and create a new entry in the CuDv object
class for the device using the odm_add_obj subroutine. At this point, the device is only
marked as Defined and the driver has not yet been loaded.  A device’s define method is
typically invoked from the command line via the mkdev command. This command will
actually look up the name of the define method to run from the PdDv database for the
device being defined. The following is a description of the various flags for the generic
define method:

–c class String that designates the class of the device

–s subclass String that designates the subclass of the device

–t  type String that designates the type of the device

–p  parent String that designates the logical name of the device’s parent

–w connection  String that designates the connection point

–l  name String that designates the new logical name of the device
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–u Indicates that the –l flag is not allowed (the define method will generate a
new logical name based on the device’s prefix stored in PdDv)

–n Indicates that the device has no parent or parent connection

–o Indicates that only one of these types of devices can exist and that the –l
flag is not allowed

–k Indicates that the device can only be defined if one does not already exist
at the specified connection point

For a more detailed discussion on writing a define method, see the “Device Configuration
Subsystem” chapter in AIX Version 4.1 Kernel Extensions and Device Support
Programming Concepts. For more information on the odm_add_obj subroutine, see
AIX Version 4.1 Technical Reference, Volume 2: Base Operating System and Extensions.

Configure Methods
Config methods are designed to resolve a device’s attributes, build device-dependent
structures, find any child devices, and load a device’s driver. A device may have attributes
that could conflict with other devices that already exist on the system. For example, an
adapter’s bus-memory address cannot conflict or overlap the address of another adapter.  It
is the duty of the configure method to ensure that this does not occur. The busresolve
routine (discussed in “Adapter Device Attributes and busresolve,” on page 6-7), is a
system call provided to ensure that bus attributes do not conflict.

A device dependent structure (DDS) is used by the configure method to pass vital
information down to the device driver. This structure may contain information such as the
bus slot location, DMA level, and interrupt level of an adapter, or various attributes needed
to customize operation of the device. The DDS is built by reading in information from the
various databases. For example, the slot number can be read from the connwhere value
stored in CuDv. Various attributes required by the device driver can also be read from either
PdAt or CuAt using the getattr subroutine. Because CuAt contains non-default attribute
values, the getattr subroutine queries it first before retrieving values from PdAt.

The DDS structure is typically passed in to the driver through the driver’s dd_config routine.
After using the loadext routine to load the driver, the configure method should build the
DDS structure and pass it to the driver using the sysconfig subroutine call and a command
of CFG_INIT. The following is an example:

sysconfig (SYS_CFGDD, &dds, sizeof(dds));

The sysconfig routine will call the driver’s dd_config routine with the CFG_INIT command
and pass in the DDS structure.

For more information on the sysconfig routine, see AIX Version 4.1 Technical Reference,
Volume 2: Base Operating System and Extensions. For more information on the loadext
subroutine, see AIX Version 4.1 Technical Reference, Volume 6: Kernel and Subsystems.

If the device can have child devices connected to it, the configure method must detect them
and run the child device’s define method in order for the child to be added to the CuDv
database. Once the define method has been successfully run, using the odm_run_method
subroutine, the logical name of the newly created child should be printed to stdout so that
the Configuration Manager can catch it and run the child’s configure method.

Once the configure method has successfully loaded and configured the device driver, it
should change the state of the device in the CuDv database to available using the
odm_change_obj subroutine.
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For a detailed discussion of configure methods, see the “Device Configuration Subsystem”
chapter in AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts.
For reference information on the odm_change_obj subroutine, see AIX Version 4.1
Technical Reference, Volume 2: Base Operating System and Extensions.

Change Methods
Change methods are designed to modify a device’s attributes to values other than the
default. They can also alternately be designed to relocate a device to a different location or
parent device. A generic change method /usr/lib/methods/chgdevice is provided on the
system. A device’s default attribute values are stored in the Predefined Attribute (PdAt)
object class. The Customized Attribute (CuAt) object class is used to store values that are
different from the default.

A change method should first verify that the attributes being modified are being changed to
valid values. If the device is currently configured (available), it should be unconfigured by
using the odm_run_method subroutine to execute the unconfigure method. This is
required so that the device driver can later be initialized again with the new attribute values.

If an attribute is being changed to a value other than the default as listed in PdAt, a new
attribute value should be added in CuAt. If a CuAt value already exists, it can be changed to
the new value with the odm_change_obj subroutine.

If an attribute is being changed back to the default PdAt value, the CuAt entry should be
deleted.

Once all the attributes have been changed, the device driver’s configure method should be
executed using the odm_run_method subroutine so that the device driver can be reloaded
with the new attribute values. The following is a list of the various parameters for the generic
change method:

–l  name String that designates the logical name of the device

–p  parent String that designates the logical name of the device’s new parent

–w connection String that designates the device’s new connection point

–a  attr=val, attr=val
Strings that designate the attribute name and new value

For a more detailed discussion on writing a change method, see the “Device Configuration
Subsystem” chapter in AIX Version 4.1 Kernel Extensions and Device Support
Programming Concepts. For reference information on the odm_run_method and
odm_change_obj subroutines, see AIX Version 4.1 Technical Reference, Volume 2: Base
Operating System and Extensions.

Unconfigure Methods
Unconfigure methods merely undo what a configure method has done. As in the case of the
define and change methods, the generic unconfigure method
(/usr/lib/methods/ucfgdevice) that has been provided should be satisfactory for many
devices. However, if a specific device requires additional functionality, a new unconfigure
method will have to be written.

In general, an unconfigure method should first verify that the device is in the correct state
(AVAILABLE). It should then verify that any children of the device are also in the correct
state (DEFINED). The unconfigure method should then call sysconfig with a command of
CFG_TERM to instruct the device driver to terminate (the sysconfig routine will call the
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driver’s dd_config routine with the CFG_TERM command).  Once the device driver has
successfully terminated, the driver can be removed with the loadext system call.  As a final
step, the unconfigure method should change the state of the device in CuDv from
AVAILABLE to DEFINED. The following is a list of the various parameters for the generic
unconfigure method:

–l <name> String that designates the logical name of the device

For more information on the sysconfig system call, please refer to the book
AIX Version 4.1 Technical Reference, Volume 2: Base Operating System and Extensions.
For reference information on the loadext subroutine, see AIX Version 4.1 Technical
Reference, Volume 6: Kernel and Subsystems. For a more detailed discussion on writing an
unconfigure method, see the “Device Configuration Subsystem” chapter in AIX Version 4.1
Kernel Extensions and Device Support Programming Concepts.

Undefine Methods
Undefine methods will take a device from the defined state to the undefined state by
removing its entry from the CuDv database. In this state, all previous information about
where the device was connected and what logical name was attached to it is removed. Any
customized attributes for the device are also lost. As in the case of the change, define, and
unconfigure methods, a generic define method (/usr/lib/methods/undefine), which should
be satisfactory for many devices, has been provided.

In general, an undefine method should first verify that the device is in the correct state
(DEFINED). It should then verify that child devices, if any, have been undefined (they don’t
exist in the CuDv database). The undefine method should then make sure that this device is
not dependent on any other device, by checking the CuDep database, and removing all of
its customized attributes from CuAt. The final step the undefine method should perform is to
release the device number (devno) and remove any CuDvDr and CuDv entries. The
following is a list of the various parameters for the generic undefine method:

–l <name> String that designates the logical name of the device

For a more detailed discussion on writing an undefine method, see the “Device
Configuration Subsystem” chapter in AIX Version 4.1 Kernel Extensions and Device Support
Programming Concepts.

Configuring Devices with No Parent
The configuration hierarchy is designed so that many devices are actually children of other
parent devices. These child devices are automatically detected and defined by their parent
configure methods. There are cases, however, of devices that are not connected to any
parent devices. One example is the system node, sys0, which is a device that has no
parent but is instead the parent and grandparent to most of the devices on the system.
Many third-party vendor devices fall into this category of parent-less devices. In this case,
these devices cannot rely on a parent because they are new to the system and the current
OS either cannot detect them or will not recognize them.

When devices cannot rely on a parent to run their define method, they must use the
Config_Rules database to initiate execution of their define method. Very often this define
method will also have to detect the device being defined, which requires writing and using a
new custom define method in place of the generic method. This is necessary because no
parent exists or no parent has been written to perform the normal detection. The following is
an example of a Config_Rules entry:
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     phase= 2
     seq  = 50
     boot_mask  = 0
     rule = ”/usr/lib/methods/defdevice”

In the previous example, the define method /usr/lib/methods/defdevice, would be
run during phase 2 with a sequence number of 50. Phase 1 is used to configure basic
essential devices needed to boot the system. Phase 2 is used to boot most base system
devices. Note that a phase of 3 indicates methods to be run in phase 2 service mode. A
high sequence number was chosen in case the device depended on other devices to be
available. A high value causes the method to be run late in the configuration process. A
nonzero boot mask, as defined in /usr/include/sys/cfgdb.h, indicates the type of boot (for
example, disk, diskette, tape, or network) to which the method applies.

For more information on the Config_Rules object class, see AIX Version 4.1 Technical
Reference, Volume 6: Kernel and Subsystems.

Adapter Device Attributes and busresolve
When configuring a device, care must be taken not to configure a device in a manner that
conflicts with an existing device on the system. For example, a SCSI device cannot be
configured with the same ID and LUN (logical unit number) as another device. In the case of
adapters, not only must their connection locations (slot numbers) be unique, but several of
their attributes must also be unique. For example, one adapter’s allocated bus memory
range must not overlap another’s.

The busresolve routine is available to detect and resolve any possible conflicts with bus
resource attributes. It is usually called from within an adapter’s configure method. This
routine needs to be called only if the configure method is being executed at run time. The
bus configure method calls busresolve at boot time to properly resolve the attributes for all
adapter devices.

busresolve will scan the CuAt and PdAt databases for all attributes with types that
designate them as bus resource attributes. The following is a list of different bus attribute
types:

Type Description

O Indicates an address and width for bus I/O

M Indicates an address and range for DMA transfers

B Indicates an address and range for non-DMA transfers

A Indicates a DMA arbitration level

I Indicates a sharable interrupt level

N Indicates a non-sharable interrupt level

P Indicates an interrupt priority class

W Used to specify bus I/O and memory widths if not already specified by
the address attribute

G Indicates a bus resource that must be assigned as part of a group

S Indicates a bus resource that must be shared with another adapter

busresolve will adjust the attribute values within each attribute’s specified allowable ranges.
busresolve never adjusts the attributes of an AVAILABLE device. It only adjusts the
attributes of DEFINED devices. This implies that devices configured first will have a greater
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probability of obtaining their default attribute values. When a configure method calls
busresolve during run time, it should pass in the device’s logical name as the logname
parameter.  This ensures that busresolve will adjust attributes only for the specified
DEFINED device. Passing in NULL for logname causes busresolve to attempt resolution of
attribute values for all Defined devices. This is typically done by the bus configuration
manager at boot time and, therefore, does not need to be done by each individual adapter
configure method. The CuAt and PdAt databases are automatically updated by busresolve
once all attributes have been resolved.

For reference information on busresolve, see AIX Version 4.1 Technical Reference,
Volume 6: Kernel and Subsystems.

Configuration of Devices on PCI and ISA Bus Systems
The configuration process for adapters attached to systems that contain PCI and ISA buses
remains similar to the process for systems with a Micro Channel bus. The same ODM and
configuration methods scheme is used with one additional step required from the system
administrator when configuring adapters attached to the ISA bus. The PCI and ISA bus
configuration also differs from the Micro Channel bus in that the ISA is actually treated as a
child of the PCI bus even though the ISA bus has adapter children of its own.  During
configuration of the PCI bus, the ISA bus is detected and then a separate configure method
is called for the ISA bus.

Because ISA adapters do not implement the notion of POS registers as in the case of Micro
Channel adapters, an additional step must be performed by the system administrator. In the
case of PCI and Micro Channel adapters, through the machine device driver, the bus
configure method can detect the type of adapter attached and then dynamically set certain
parameters such as the interrupt level or DMA arbitration level.  In the case of ISA adapters,
these types of parameters are set via jumpers or DIP switches that physically reside on the
adapter. The system administrator installing the card must first set these parameters to
avoid conflicts with other adapters before physically installing the adapter into the system.
Since these settings cannot be detected on the ISA bus, the system administrator must
manually add the CuDv (Customized Device) and CuAt (Customized Attribute) entries for
the adapter.  The CuDv entries should reflect that the adapter is a child of the ISA bus and
its location code must correspond to the correct slot in which it resides.  The CuAt entries
must also reflect the actual settings on the adapter itself and must also not conflict with
other adapters on the ISA bus. The generic field of the CuAt and PdAt entries should also
contain a second character U to indicate that the particular attribute value is user modified.
Newer ISA adapters that provide dynamic detection of modification and card settings
(plug-and-play ISA adapters) are currently not supported.

Once the ISA specific requirements have been met, the configuration process of the ISA
and PCI busses is identical to that of the Micro Channel bus as previously discussed. The
busresolve routine is called by the corresponding bus configure method during boot so that
adapter configure methods are not required to call it. The only time an adapter configure
method should call busresolve is during a runtime configure when the current attributes of
the adapter being configured must be validated against values already resolved during boot.
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Chapter 7. Block Device Drivers

A block device driver interacts with a special facility in the kernel called the buffer cache.
Special entry points in the driver are provided because of this interaction. A block device
driver may also support character type interaction through read and write operations
referred to as raw I/O. The principal characteristic of block devices is to perform I/O
operations using system facilities such as buffer cache management and paging.

Introduction
Data read from character devices is not stored in a cache for subsequent reading from
system buffers. For block device drivers, data is stored in a cache. Block devices interact
with the system to keep the cache containing information that a process (or multiple
processes) can read from at any time. If the information is not in the cache, the system (not
the user) requests the data from the block device driver.

Like all devices, the interaction with block devices is through shared memory. In addition,
there are routines to indicate when data in the shared memory (called buf structures) has
completed I/O processing.

The following sections cover the entry points responsible for the movement of data to and
from block devices. This includes control information, the shared memory facilities, the
mechanisms for programs to share the information, and the use of the kernel cache.

Finally, it may be necessary to talk to the device directly without interacting with the system
buffer cache. This topic is presented in “Character Access to Block Device Drivers”  on page
7-6.

Block I/O Device Driver Entry Points
The device switch table contains the entry point addresses of the interface routines for each
device driver in the system, just as it does for the character device drivers. The following
Entry Points for the Block Device Driver figure shows the entry points for a block device
driver.

Like the character device driver, the block device driver must supply a config routine for
configuration support as well as an open and a close routine. The open routine is called
each time the device is opened and the close routine is called only on the final close of the
device.

Instead of having separate read and write routines, like character device drivers, each block
device driver has a strategy routine. This routine is called with a pointer to a buffer header,
known as the buf structure, which contains the I/O request parameter.
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The strategy routine handles requests as buffers to be written or read from the device.

dddump: Used if this block
device is a device to which
system data can be dumped.

ddclose: Called on the
final close of a device.

ddopen: Called on
each open of a device.

ddconfig: Called when
a device is configured.

config open dumpclose read

ddread (optional): This
character–based request
is similar to ddwrite.

ddioctl: The
entry point for
device-specific
operations.

Not supported.
(nulldev)

ddstrategy: Block reads
and writes are done here.

ddwrite (optional): This character-based
request is converted into a block and sent
to the ddstrategy routine. System buffers
are not used. Buffers are allocated by the
device driver resulting in less system
overhead and better performance.

Entry Points for a Block Device Driver

write strategy mpx revoke
select,
poll ioctl

ddconfig Entry Point
The configuration routine of a block device driver creates an entry in the device switch table
for the block device driver. The device may support raw access. Raw access is character
access to a block device. In this case, the driver’s configure method must have created /dev
special file entries for use in raw access.  These special files retain the same major and
minor numbers as their corresponding block device special files, but they have the letter r as
a prefix, and the special files are created as character rather than as block.

For example, a block device named /dev/hdisk0 that supports raw access also has a
/dev/rhdisk0 special file. The system calls the read and write routines of the raw device if
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/dev/rhdisk0 is opened. Other UNIX systems may not allocate the same major and minor
numbers for both character and block devices.

ddopen and ddclose Entry Points
The AIX operating system supports only a few block devices in normal installation. These
devices, such as hard disks and CD-ROM, are capable of random access and are opened
by system services such as the buffer cache and paging subsystem. They are not to be
opened directly by user space applications during normal system operations, but may be
opened during maintenance by applications such as fsck.

The ddopen routine verifies that the device is a valid device and that it is online and
available. It also performs any setup required by the driver, such as pinning of code and
allocation of data structures.

Most of the block devices are attached to the SCSI adapter, and open the SCSI adapter
device driver to communicate with the device. For more information on the SCSI subsystem,
see the chapter on “Small Computer System Interface (SCSI) Subsystem” in AIX Version 4.1
Kernel Extensions and Device Support Programming Concepts  and the chapter on SCSI
Device Drivers in this book.

The device performs ddclose processing to release the resource. If the device is attached
to the SCSI bus, refer to the AIX Version 4.1 Kernel Extensions and Device Support
Programming Concepts book  and the chapter on SCSI  Device Drivers in this book for
details.

ddstrategy Entry Point
The I/O requests to the physical device are accomplished through the strategy routine. The
strategy routine provides a “strategy” for mapping I/O requests to the device so that it
minimizes requests to the device and maximizes data transfer. When the strategy routine
(ddstrategy device driver entry point) is called, a pointer to a buffer header or a chain of
buffer headers specifies the request for device I/O. The strategy entry point is called in a
user process context when the buffer cache does not contain the buffer requested by the
user. The strategy routine, however, does not know about the user process.

The buffer header contains the following information:

• The major and the minor numbers of the device.

• The description of the memory buffer to be used for the data transfer.

• The direction of the transfer.

• The transfer count.

• The block number on the device for which the transfer is targeted.

• The operation flag.

The strategy routine returns to the caller as soon as the buffer headers are queued to the
appropriate device queue. Note that the strategy routine provides no return code to the
caller and never waits for I/O completion before returning. This means that all requests are
assumed valid in terms of parameters and that the request is asynchronous. Normal errors,
such as out-of-range blocks, are caught but not returned directly as a return code.

The execution of the request completes some time later. The buffer structure contains fields
for reporting the completion of the request.

A header contains all the information required to perform block I/O. The buf structure is
shown in the  buf Structure figure. It is the primary interface to the bottom half of block
device drivers.
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Chain of buf
structures in use

Chain of available
buf structures

Data area is kernel
address space.

busy ch
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buf Structure
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event
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start
time
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memory

descriptor
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In AIX, the traditional strategy interface is extended as follows:

• The device driver strategy routine is called with a list of buf structures, chained using the
av_forw  and av_back pointers. The last entry in this list has a NULL av_forw pointer.

• When the operation is completed and the driver calls the iodone kernel service, the
b_iodone function defined by the caller is scheduled to run as a software interrupt
handler.

The buf structure and its associated data page must be pinned before calling the strategy
routine. This is outlined in the /usr/include/sys/buf.h include file.

The buf structure contains the operation to be performed and status information to be
returned to the caller, and is more like a message exchanged between a requestor and a
service provider.

The caller is notified of I/O completion (or of an error associated with the request) by the
device driver’s call to the iodone kernel services. A residual count of the number of bytes
requested but not transferred by the operation is placed in the b_resid field of the buf
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structure by the device driver before the I/O is marked as complete for the buffer header. If
all the requested bytes are transferred, this count is set to zero.

For more information on the specific fields of the buf structure, see “buf Structure”  in
AIX Version 4.1 Technical Reference, Volume 5: Kernel and Subsystems.

Note: In  AIX Version 4.1 a new flag, B_MPSAFE, has been added to the list of valid flags
for the b_flags field of the buf structure definition. This flag is to indicate whether or
not it is safe for the iodone processing to be performed on one processor or multiple
processors. The devstrat kernel service will actually mark the buf structure with the
B_MPSAFE_INITIAL flag once the B_MPSAFE flag has been sent. A device driver’s
strategy routine, however, does not have to be concerned with this flag, since it is
merely an instruction to the iodone system call about how to complete the
processing of the buf structure.

Reordering Block I/O Requests
Multiple I/O requests can also be presented to the strategy routine, where the additional
buffer headers can be chained to the first by using the av_forw pointers. While the device
strategy routine is free to rearrange the buffers on its device queue with respect to the
processing of single request, the ordering of the buffer headers provided in a chain to the
strategy routine cannot be modified. The strategy routine also determines if the block
number requested is valid for the device. In the case of a read-only operation, a block
number at the end-of-media is not considered as an error, but no data is transferred.

For a write operation, if the block number is at the end-of-media, it is considered an error,
the B_ERROR flag in the buf structure is set, and the b_error field contains the ENXIO
value.

Categorizing Requests to the Start I/O Routine
To maintain the state of the device and its I/O requests, the device driver typically allocates a
private data structure in the system memory associated with the device. The data structure
contains the device status along with the device error information and the device queue
pointers. Some device drivers maintain more than one queue of buffer headers. For
example, one queue for the requests that are waiting for I/O start and another queue for the
request that are currently in process.

For SCSI operations, the queueing process scans the pending queue for the requested
device so that the number of SCSI operations is minimized. The requests are grouped by
one of the following rules:

• Contiguous write operations

• Operations larger than maximum transfer size

• Operations requiring special processing

The coalesced (grouped) requests will be removed from the pending queue and placed in
the in_progress queue so that a single command can be built to satisfy the requests. These
requests are then queued and the routine to start I/O is called.

Starting Processing with the Start I/O Routine
The routine to start I/O checks to make sure that the device is not busy, and then scans the
request queues in an attempt to find an operation to start.

First, the command stack is checked to see if a command needs to be restarted. Then the
in_progress queue is checked to start any operations that have already been coalesced.
Finally, the pending queue is checked. If it is not empty, the coalesce routine is called to
group the operations into the in_progress queue.
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When a request has been found and built, the adapter device driver is called by the strategy
routine to begin processing the operation. While the queues are being scanned and an
operation is in progress, the device busy flag is set. It is then reset if no request is found.

Once the I/O handling routine has completed an I/O transfer, it calls the iodone kernel
service that determines if the indicated operation has completed successfully or if it has
failed. If the operation is successful and complete, the next request is processed by the start
I/O routine. If the operation has failed, your general failure processing routine is called in an
attempt (such as retry) to clear the error.

dddump Entry Point
To support system dumps, a block device driver must supply the dddump entry point. It is
called by the devdump kernel service. See Chapter 14, “Debugging Tools,” for more
information on system dumps.  See Chapter 8, “SCSI Device Drivers,” for more information
on providing system dump support on SCSI devices.

Character Access to Block Device Drivers
While a character device driver can only be accessed by a character special file, most block
device drivers provide both a block and a character special file. With this dual interface, a
user can access the device in either block or character mode.

Note that the block device driver must have a read and a write entry point as well as a
strategy entry point if it supports both character and block mode access. If it supports only
block mode, it only needs to support a strategy entry point.

The diskette or hard disk device drivers are examples of the dual nature of block device
drivers. The diskette is accessed by /dev/fd0 for block mode and by /dev/rfd0 for character
(raw) mode. The hard disk is accessed by /dev/hdisk0 for block mode and /dev/rhdisk0 for
character (raw) mode.

Raw I/O Processing
Raw I/O processing is a mechanism by which a block device driver has the ability to transfer
data without using the I/O buffer cache. The raw I/O request is converted into a block and
then sent to the device driver strategy entry point to be processed while the read and the
write routines are typically waiting for the I/O completion.

When your device driver is configured, it contains entries for both read and write (raw
access) and strategy (block access) routines. In addition, the configure method must set up
the /dev entries for both special files.

If there is no buffer cache and you make the request directly, a different buffering facility is
involved. You are providing a buffer passed in through the uio services. Therefore the read
and write entry points are talking to a user process and translating the requests into
strategy requests but still using buf structures. Because the buf structure contains a
header that contains a pointer to the data area, it can be mapped to point to a user data
area.

In fact, the user buffer can come out of the user data, text segments, shared memory
segments, or the system segment. The different areas are defined in the uio and iovec
structures.

The read and write routines of the raw device driver use the uphysio kernel service to map
the uio areas into buf structures used by the strategy routines. After filling in the buf
structure with data passed to it through the uio structure,  the uphysio kernel service will
call the block device driver’s strategy routine.  The number of buf headers sent is
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determined by the buf_cnt parameter passed to the uphysio kernel service. The uphysio
kernel service returns only after all I/O has completed or after encountering an error. See
“uphysio Kernel Service” in AIX Version 4.1 Technical Reference, Volume 5: Kernel and
Subsystems for a more detailed discussion of this kernel service.

Note: Use care when accessing a block device through its character interface. Because
the buffer cache is bypassed, the driver must be sure that no data currently exists in
the kernel buffer cache. If another process did have data present in the cache, there
is a high probability of data becoming inconsistent with data obtained through the
character interface.

Block I/O Device Summary
A block I/O device contains a device name for its block device and its optional character
device. Block devices support strategy routines, and possibly support read and write
routines. The kernel cache speeds up access to data by allowing multiple processes to use
the same data and keeping data that is referenced often in the cache. However, the cache is
based on buffer sizes compatible with UNIX file system block sizes and is not efficient for
applications that can use larger block sizes. To improve performance, a block device driver
also provides raw or character access to block devices. More information is available in
AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts.
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Chapter 8. SCSI Device Drivers

The AIX Small Computer Systems Interface (SCSI) subsystem has two parts:

• SCSI Device Driver

• SCSI Adapter Device Driver

The SCSI adapter device driver is designed to shield you from having to communicate
directly with the system I/O hardware. This gives you the ability to successfully write a SCSI
device driver without having a detailed knowledge of the system hardware. You can look at
the SCSI subsystem as a two-tiered structure in which the adapter device driver is the
bottom or supporting layer. As a programmer, you need only worry about the upper layer.
This chapter only discusses writing a SCSI device driver, because the SCSI adapter device
driver is already provided in AIX.

The SCSI adapter device driver, or lower layer, is responsible only for the communications to
and from the SCSI bus, and any error logging and recovery. The upper layer is responsible
for all of the device-specific commands. The SCSI device driver should handle all
commands directed towards its specific device by building the necessary sequence of I/O
requests to the SCSI adapter device driver in order to properly communicate with the device.

These I/O requests contain the SCSI commands that are needed by the SCSI device. One
important aspect to note is that the SCSI device driver cannot access any of the adapter
resources and should never try to pass the SCSI commands directly to the adapter, since it
has absolutely no knowledge of the meaning of those commands.

Device Driver Overview
The role of the SCSI device driver is to pass information between the operating system and
the SCSI adapter device driver by accepting I/O requests and passing these requests to the
SCSI adapter device driver. The device driver should accept either character or block I/O
requests, build the necessary SCSI commands, and then issue these commands to the
device through the SCSI adapter device driver.

The SCSI device driver should also process the various required reservations and releases
needed for the device. The device driver is notified through the iodone kernel service once
the adapter has completed the processing of the command. The device driver should then
notify its calling process that the request has completed processing through the iodone
kernel service.

Adapter Device Driver Overview
Unlike most other device drivers, the SCSI adapter device driver does not support the read
and write subroutines. It only supports the open, close, ioctl, config, and strategy
subroutines. Included with the open subroutine call is the openx subroutine that allows
SCSI adapter diagnostics.

A SCSI device driver does not need to access the SCSI diagnostic commands. Commands
received from the device driver through the strategy routine of the adapter are processed
from a queue. Once the command has completed, the device driver is notified through the
iodone kernel service.
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SCSI Adapter/Device Interface
The AIX SCSI adapter device driver does not contain the ddread and ddwrite entry points,
but does contain the ddconfig, ddopen, ddclose, dddump, and ddioctl entry points.

Therefore, the adapter device driver’s entry in the kernel devsw table contains only those
entries plus an additional ddstrategy entry point. This ddstrategy routine is the path that
the SCSI device driver uses to pass commands to the device driver. Access to these entry
points is possible through the following kernel services:

• fp_open
• fp_close
• devdump
• fp_ioctl
• devstrat

The SCSI adapter is accessed by the device driver through the /dev/scsi# special files,
where # indicates ascending numbers 0,1, 2, and so on. The adapter is designed so that
multiple devices on the same adapter can be accessed at the same time.

For additional information on spanned and gathered write commands, see “Small Computer
System Interface (SCSI)  Subsystem” in AIX Version 4.1 Kernel Extensions and Device
Support Programming Concepts.

sc_buf Structure
The I/O requests made from the SCSI device driver to the SCSI adapter device driver are
completed throught the use of the sc_buf structure, which is defined in the
/usr/include/sys/scsi.h header file. This structure, which is similar to the buf structure in
other drivers, is passed between the two SCSI subsystem drivers through the strategy
routine. The following is a brief description of the fields contained in the sc_buf structure:

struct buf bufstruct
This structure is a copy of the standard buf structure used for the I/O
request that is defined in the /usr/include/sys/buf.h header file. Note that
the b_work field in the buf structure is reserved for use by the SCSI
adapter device driver.

struct  buf *bp Contains a pointer to the original buffer structure used by the process
calling the SCSI device driver. It can be a pointer to a list of SCSI spanned
data transfer commands or it can contain a value of NULL. A NULL value
indicates that no list exists and all required information is contained in the
bufstruct field (see the preceding paragraph). A non-NULL value also
requires the resvd1 field of the sc_buf structure to be NULL.

uint resvd1 This field is usually set to NULL although it can contain a pointer to a uio
structure which is used in gathered writes.

uint resvd2 Reserved (should be set to zero).

uint resvd3 Reserved (should be set to zero).

uint resvd4 Reserved (should be set to zero).

uint timeout_value
Contains the amount of time, in seconds, to be used in waiting for the
completion of the command before it times out. A zero value indicates no
timeout should be used.
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uchar status_validity
This field can contain the SC_SCSI_ERROR bit flag that indicates that the
scsi_status field return code is valid or the SC_ADAPTER_ERROR bit
flag which indicates that the general_card_status return code is valid. There
are three cases when considering the values of the return codes:

• If the sc_buf.bufstruct.b_flag field has the B_ERROR flag set,
then the status field contains a valid errno value. If the b_error field
has the value ENXIO, then the command needs to be restarted or the
SCSI device driver canceled the request. If the b_error field has the
value EIO, then the status_validity field indicates which status field,
scsi_status or general_card_status, contains the error.

If the status_validity field is zero, examine the
sc_buf.bufstruct.b_resid field for any possible error. Note that
b_resid can be nonzero even if no error occurred. Evaluate the
nonzero value carefully to ensure that it is a proper error value.

• If the sc_buf.bufstruct.b_flag field does not have the B_ERROR
flag set, then no error is being reported. However, you must still examine
the b_resid field to determine if an error has actually occurred. If an
error has occurred, it is up to the SCSI device driver to recover since
device queues are not stopped and future commands can still be sent to
the adapter and driver.

• If the sc_buf.bufstruct.b_flag field has the B_ERROR flag set,
then the device queue has been halted. To recover or continue after the
error, the sc_buf.flags field must have the SC_RESUME bit set in the
first sc_buf structure.

uchar scsi_status
This field is valid whenever the correct bit is set in the status_validity
field. The sc_buf.bufstruct.b_error field should also contain the
value EIO whenever the scsi_status field is valid. The various valid
values are shown and defined in the /usr/include/sys/scsi.h header file.

uchar general_card_status
This field is valid whenever the correct bit is set in the status_validity
field. The sc_buf.bufstruct.b_error field should also contain the
value EIO whenever the scsi_status field is valid. The various valid
values are shown and defined in the /usr/include/sys/scsi.h header file.

The general_card_status bit is set in the status_validity field
whenever the SCSI adapter device driver encounters an unrecoverable
error. Recovered errors are those that have been corrected and logged by
the adapter device driver. The SCSI adapter device driver logs both bus and
adapter-related errors.

If an error is detected after a command has reached a device, it is the
responsibility of the device driver to attempt recovery and log the error. Of
the values shown in /usr/include/sys/scsi.h, the device driver should
handle:

• SC_SCSI_BUS_FAULT
• SC_CMD_TIMEOUT
• SC_NO_DEVICE_RESPONSE
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The SC_SCSI_BUS_FAULT error should be handled by the device driver
and not the adapter device driver since this can be caused by a protocol or
hardware failure.

uchar adap_q_status
This field is used to indicate that the adapter did not clear the device queue
on a failure. The adapter will set this field to SC_DID_NOT_CLEAR_Q to
indicate this condition. For example, this flag is returned if a check condition
occurs while a command is being queued to the device.

uchar  lun This field should contain the LUN of the target device. Note that if the LUN
is greater than 7, this field should contain the LUN value and the lun field in
the scsi_cmd structure should be 0.

uint resvd7 Reserved (should be set to zero).

uchar q_tag_msg
This field is used when the SCSI device supports command tag queueing. It
should be set to 0 if the device does not support queueing.  See the
/usr/include/sys/scsi.h file for a list and explanation of the valid values for
this field.

uchar flags This field contains various flags to instruct the adapter driver on how to
process the transfer request.  See the /usr/include/sys/scsi.h file for a list
and explanation of the valid values for this field.

Adapter/Device Driver Intercommunication
In a typical request to the device driver, a call is first made to the device driver strategy
routine, which takes care of any necessary queueing. This strategy routine then calls the
device driver’s start routine, which fills in the sc_buf structure and calls the adapter device
driver’s strategy routine through the devstrat kernel service.

The adapter’s strategy routine validates all of the information contained in the sc_buf
structure and also performs any necessary queueing of the transaction request. If no
queueing is necessary, the adapter’s start subroutine is called.

When an interrupt occurs, the SCSI adapter interrupt routine fills in the status_validity
field and the appropriate scsi_status or general_card_status field of the sc_buf
structure. The bufstruct.b_resid field is also filled in with the value of nontransferred
bytes. The adapter’s interrupt routine then passes this newly filled in sc_buf structure to
the iodone kernel service which then signals the SCSI device driver’s iodone subroutine.
The adapter’s start routine is also called from the interrupt routine to process any additional
transactions on the queue.

The device driver’s iodone routine should then process all of the applicable fields in the
queued sc_buf structure for any errors and attempt error recovery if necessary. The device
driver should then dequeue the sc_buf structure and then pass a pointer to the structure
back to the iodone kernel service so that it can notify the originator of the request.

SCSI Adapter Device Driver Routines
This section describes the following routines:

• config
• open
• close
• openx
• strategy
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• ioctl

config
The config routine performs all of the processing needed to configure, unconfigure, and
read Vital Product Data for the SCSI adapter. When this routine is called to configure an
adapter, it performs the required checks and building of data structures needed to prepare
the adapter for the processing of requests.

When asked to unconfigure or terminate an adapter, this routine deallocates any structures
defined for the adapter and marks the adapter as unconfigured. This routine can also be
called to return the Vital Product Data (VPD) for the adapter, which contains information that
is used to identify the serial number, change level, or part number of the adapter.

open
The open routine establishes a connection between a special file and a file descriptor. This
file descriptor is the link to the special file that is the access point to a device and is used by
all subsequent calls to perform I/O requests to the device. Interrupts are enabled and any
data structures needed by the adapter driver are also initialized.

close
The close routine marks the adapter as closed and disables all future interrupts, which
causes the driver to reject all future requests to this adapter.

openx
The openx routine allows a process with the proper authority to open the adapter in
diagnostic mode. If the adapter is already open in either normal or diagnostic mode, the
openx subroutine has a return value of –1. Improper authority results in an errno value of
EPERM,while an already open error results in an errno value of EACCES. If the adapter is in
diagnostic mode, only the close and ioctl routines are allowed. All other routines return a
value of –1 and an errno value of EACCES.

While in diagnostics mode, the adapter can run diagnostics, run wrap tests, and download
microcode. The openx routine is called with an ext parameter that contains the adapter
mode and the SC_DIAGNOSTIC value, both of which are defined in the sys/scsi.h header
file.

strategy
The strategy routine is the link between the device driver and the SCSI adapter device
driver for all normal I/O requests. Whenever the SCSI device driver receives a call, it builds
an sc_buf structure with the correct parameters and then passes it to this routine, which in
turn queues up the request if necessary. Each request on the pending queue is then
processed by building the necessary SCSI commands required to carry out the request.
When the command has completed, the SCSI device driver is notified through the iodone
kernel service.

ioctl
The ioctl routine allows various diagnostic and nondiagnostic adapter operations.
Operations include the following:

• IOCINFO
• SCIOSTART
• SCIOEVENT
• SCIOSTOP
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• SCIOINQU
• SCIOSTUNIT
• SCIOTUR
• SCIOREAD
• SCIORESET
• SCIOHALT
• SCIODIAG
• SCIOTRAM
• SCIODNLD
• SCIOSTARTTGT
• SCIOSTOPTGT

SCSI Adapter ioctl Operations
This section describes the following ioctl operations:

• IOCINFO
• SCIOSTART
• SCIOSTOP
• SCIOINQU
• SCIOSTUNIT
• SCIOTUR
• SCIORESET
• SCIOHALT
• SCIODIAG
• SCIOTRAM
• SCIODNLD

IOCINFO
This operation allows a SCSI device driver to obtain important information about a SCSI
adapter, including the card’s SCSI ID and the maximum data transfer size in bytes. By
knowing the maximum data transfer size, a SCSI device driver can control several different
devices on several different adapters. This operation returns a devinfo structure as defined
in the sys/devinfo.h header file with the device type DD_BUS and subtype DS_SCSI. The
following is an example of a call to obtain the information:

rc = fp_ioctl(fp, IOCINFO, &infostruct, NULL);

where fp is a pointer to a file structure and infostruct is a devinfo structure. A non-zero rc
value indicates an error. Note that the devinfo structure is a union of several structures and
that scsi is the structure that applies to the adapter.

For example, the maximum transfer size value is contained in the variable
infostruct.un.scsi.max_transfer and the card ID is contained in
infostruct.un.scsi.card_scsi_id.

SCIOSTART
This operation opens a logical path to the SCSI device and causes the SCSI adapter device
driver to allocate and initialize all of the data areas needed for the SCSI device. The
SCIOSTOP operation should be issued when those data areas are no longer needed. This
operation should be issued before any nondiagnostic operation except for IOCINFO. The
following is a typical call:

rc = fp_ioctl(fp, SCIOSTART, idlun, NULL);
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where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and Logical Unit Number (LUN) ID values of the device to be started. The least significant
byte contains the LUN, the next least significant byte contains the SCSI ID, and the most
significant two bytes should be set to zero.

A nonzero return value indicates an error has occurred and all operations to this SCSI/LUN
pair should cease since the device is either already started or failed the start operation.
Possible errno values are EIO, EINVAL, or EACCES.

EIO The command could not complete due to a system error.
EINVAL Either the Logical Unit Number (LUN) ID or SCSI ID is invalid, or the

adapter is already open.
EACCES The adapter is not in normal mode.

SCIOSTOP
This operation closes a logical path to the SCSI device and causes the SCSI adapter device
driver to deallocate all data areas that were allocated by the SCIOSTART operation. This
operation should only be issued after a successful SCIOSTART operation to a device. The
following is a typical call:

rc = fp_ioctl(fp, SCIOSTOP, idlun, NULL);

where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and LUN ID values of the device to be stopped. The least significant byte contains the LUN,
the next least significant byte contains the SCSI ID, and the upper two bytes should be set
to zero. A non-zero return value indicates an error has occurred. Possible errno values are
EIO and EINVAL.

EIO An unrecoverable system error has occurred.
EINVAL The adapter was not in open mode.

This operation requires SCIOSTART to be run first.

SCIOINQU
This operation issues an inquiry command to a SCSI device and is used to aid in SCSI
device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOINQU, &inquiry_block);

where adapter is a file descriptor and inquiry_block is a sc_inquiry structure as defined in
the /usr/include/sys/scsi.h header file. The SCSI ID and LUN should be placed in the
sc_inquiry parameter block. The SC_ASYNC flag should not be set on the first call to this
operation and should only be set if a bus fault has occurred. Possible errno values are EIO,
EFAULT, EINVAL, EACCES, ENOMEM, ETIMEDOUT, ENODEV, and ENOCONNECT.

EIO A system error has occurred. Consider retrying the operation several times,
because another attempt may be successful.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding. Possibly no LUNs exist on the present SCSI
ID.
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ENOCONNECTA bus fault has occurred and the operation should be retried with the
SC_ASYNC flag set in the sc_inquiry structure. In the case of multiple
retries, this flag should be set only on the last retry.

This operation requires SCIOSTART to be run first.

SCIOSTUNIT
This operation issues a start unit command to a SCSI device and is used to aid in SCSI
device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOSTUNIT, &start_block);

where adapter is a file descriptor and start_block is a sc_startunit structure as defined in
the /usr/include/sys/scsi.h header file. The SCSI ID and LUN should be placed in the
sc_startunit parameter block. The start_flag field designates the start option, which
when set to true, makes the device available for use. When this field is set to false, the
device is stopped.

The SC_ASYNC flag should not be set on the first call to this operation and should only be
set if a bus fault has occurred. The immed_flag field allows overlapping start operations to
several devices on the SCSI bus. When this field is set to false, status is returned only when
the operation has completed. When this field is set to true, status is returned as soon as the
device receives the command. The SCIOTUR operation can then be issued to check on
completion of the operation on a particular device.

Note that when the SCSI adapter is allowed to issue simultaneous start operations, it is
important that a delay of 10 seconds be allowed between successive SCIOSTUNIT
operations to devices sharing a common power supply since damage to the system or
devices can occur if this precaution is not followed. Possible error values are EIO, EFAULT,
EINVAL, EACCES, ENOMEM, ETIMEDOUT, ENODEV, and ENOCONNECT.

EIO A system error has occurred. Consider retrying the operation several times,
because another attempt may be successful.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding. Possibly no LUNs exist on the present SCSI
ID.

ENOCONNECTA bus fault has occurred. Try the operation again with the SC_ASYNC flag
set in the sc_inquiry structure. In the case of multiple retries, this flag
should be set only on the last retry.

This operation requires SCIOSTART to be run first.
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SCIOTUR
This operation issues a SCSI Test Unit Ready command to an adapter and aids in SCSI
device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOTUR, &ready_struct);

where adapter is a file descriptor and ready_struct is a sc_ready structure as defined in the
/usr/include/sys/scsi.h header file. The SCSI ID and LUN should be placed in the sc_ready
parameter block. The SC_ASYNC flag should not be set on the first call to this operation
and should only be set if a bus fault has occurred. The status of the device can be
determined by evaluating the two output fields: status_validity and scsi_status.
Possible errno values are EIO, EFAULT, EINVAL, EACCES, ENOMEM, ETIMEDOUT,
ENODEV, and ENOCONNECT.

EIO A system error has occurred. Consider retrying the operation several
(around three) times, because another attempt may be successful. If an EIO
error occurs and the status_validity field is set to SC_SCSI_ERROR,
then the scsi_status field has a valid value and should be inspected.

If the status_validity field is zero and remains so on successive
retries, then an unrecoverable error has occurred with the device.

If the status_validity field is SC_SCSI_ERROR and the
scsi_status field contains a Check Condition status, then the SCIOTUR
operation should be retried after several seconds.

If after successive retries, the Check Condition status remains, the device
should be considered inoperable.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding and possibly no LUNs exist on the present
SCSI ID.

ENOCONNECTA bus fault has occurred and the operation should be retried with the
SC_ASYNC flag set in the sc_inquiry structure. In the case of multiple
retries, this flag should be set only on the last retry.

This operation requires SCIOSTART to be run first.
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SCIORESET
This operation causes a SCSI device to release all reservations, clear all current commands,
and return to an initial state by issuing a Bus Device Reset (BDR) to all LUNs associated
with the specified SCSI ID. A SCSI reserve command should be issued after the
SCIORESET operation to prevent other initiators from claiming the device. Note that
because a certain amount of time exists between a reset and reserve command, it is still
possible for another initiator to successfully reserve a particular device. The following is a
typical call:

rc = fp_ioctl(fp, SCIORESET, idlun, NULL);

where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and LUN ID values of the device to be stopped. The least significant byte contains the LUN,
the next least significant byte contains the SCSI ID, and the upper two bytes should be set
to zero. A nonzero return value indicates an error has occurred. Possible errno values are
EIO, EINVAL, EACCES, and ETIMEDOUT.

EIO An unrecoverable system error has occurred.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

This operation requires SCIOSTART to be run first.

SCIOHALT
This operation stops the current command of the selected device, clears the command
queue of any pending commands, and brings the device to a halted state. The SCSI adapter
sends a SCSI abort message to the device and is usually used by the SCSI device driver to
abort the current operation instead of allowing it to complete or time out.

After the SCIOHALT operation is sent, the device driver must set the SC_RESUME flag in
the next sc_buf structure sent to the adapter device driver, or all subsequent sc_buf
structures sent are ignored.

The SCSI adapter also performs normal error recovery procedures during this command
which include issuing a SCSI bus reset in response to a SCSI bus hang. The following is a
typical call:

rc = fp_ioctl(fp, SCIOHALT, idlun, NULL);

where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and LUN ID values of the device to be stopped. The least significant byte contains the LUN,
the next least significant byte contains the SCSI ID, and the upper two bytes should be set
to zero. A nonzero return value indicates an error has occurred. Possible errno values are
EIO, EINVAL, EACCES, and ETIMEDOUT.

EIO An unrecoverable system error has occurred.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

This operation requires SCIOSTART to be run first.
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SCIODIAG
This command is most commonly used by a SCSI adapter diagnostic program. The
SCIODIAG operation allows the SCSI adapter to run various diagnostic commands, which
include:

• Internal Diagnostics Test
• SCSI Wrap Test
• Read/Write Register Test
• POS Register Test

These diagnostics options are defined, along with the sc_card_diag structure which is used
in the call, in the /usr/include/sys/scsi.h header file. Any errors detected by the diagnostics
are returned in the same sc_card_diag structure. Refer to the header file for a definition of
the returned values.

Whenever an error is detected, an EFAULT errno value is returned along with the
appropriate error statuses in the sc_card_diag structure. When the ENOMSG value is
received, no information is provided in the error status fields.

Because this operation attempts no retries or error recovery, no error logging is provided.
The following is a typical call:

rc = ioctl(adapter, SCIODIAG, &diag_struct);

where adapter is a file descriptor and diag_struct is a sc_card_diag structure. Possible
errno values are EIO, EFAULT, EINVAL, EACCES, ENOMSG, and ETIMEDOUT.

EIO An unrecoverable system error has occurred.

EFAULT A user process copy has failed or diagnostics has failed without completing
all tests.

EINVAL An invalid diagnostic command was passed.

EACCES The adapter is not in diagnostics mode.

ENOMSG The diagnostic command has completed with errors.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

This operation requires the adapter be in diagnostic mode.

SCIOTRAM
This operation is designed to test SCSI adapter RAM. However, it is currently not supported
and therefore, returns an errno value of ENXIO if called.

SCIODNLD
This operation downloads microcode to the SCSI adapter and is used in configuring the
SCSI adapter. This command can also be used to query for the current version of the
microcode from the adapter. The following is a typical call:

rc = ioctl(adapter, SCIODNLD, &dnld_struct);

where adapter is a file descriptor and dnld_struct is a sc_download structure. Possible
errno values are EIO, EFAULT, EINVAL, EACCES, ENOMEM, and ETIMEDOUT.

EIO An unrecoverable system error has occurred or there is a checksum error
with the microcode. If the adapter has been opened in diagnostics mode,
this error is logged in the system error log. If the adapter has onboard
microcode, it may still function properly.
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EFAULT A user copy has failed or a severe I/O error has occurred during the
download and all subsequent commmands to this adapter should cease. If
the adapter has been opened in diagnostics mode, this error is logged in
the system error log.

EINVAL An invalid input parameter was passed.

ENOMEM A request for memory failed.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.
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SCSI Device Driver Routines
A SCSI device driver should contain the following routines:

• config
• ioctl
• open
• close
• read
• write

Additional routines that you may need are the strategy, iodone,  and dump routines. A
dump routine is needed if the device is to be used as the receiver of a system dump. A
strategy routine is needed in the case of block I/O device drivers that handle lists of buf
structures.

Because the AIX operating system allows device drivers to be paged out of memory, certain
functions and data structures of the driver must be guaranteed to be in memory to avoid
page faults while running in the interrupt environment.This is required because disabling
interrupts to any level will prevent the system from paging any pages in or out.

Routines that are called from an interrupt handler run in the interrupt environment while
those that are called from a kernel or user process run in the process environment. Routines
that run in the process environment can be interrupted by those running in the interrupt
environment and can be preempted by processes with a higher process priority.

Routines running in the interrupt environment can only be interrupted by those running at a
higher interrupt priority or by exceptions. In order for interrupt environment routines to avoid
causing page faults, all code and data accessed in the interrupt environment must be
pinned. Kernel services that deal with the pinning of code are pin, pinu, and pincode.

A function name is passed to the pincode kernel service when using it to pin driver code.
However, the entire module that contains the function is pinned, not just the function itself. In
the case of large device drivers, this is a wasteful use of memory. To get around this
restriction, split the driver into two halves:

• a top half

• a bottom half

The top half contains preemptable routines that run in the process environment while the
bottom half contains routines that run in the interrupt environment.

You can compile the two halves so that they are cross-linked. This allows one half of the
driver to be automatically loaded together with the other half when it is loaded. The bottom
(pinned) half should not have any dependencies on the top (unpinned) half, so you must
carefully plan the two halves to avoid this condition, while at the same time minimizing
wasted memory.

Usually, top-half routines include the config, ioctl, open, close, read, and write routines.
Routines that usually reside in the bottom half are the strategy, dump, and iodone routines.
Put any routines that cannot be paged out in the bottom half of the device driver.

In the case of read-only devices, such as CD-ROM, you do not need a write routine.
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Top-Half Routines
This section discusses the following routines:

• config
• ioctl
• open
• close
• read
• write

config
This routine is commonly used when configuring, unconfiguring, or changing attributes of the
device. It is called by various configuration methods which include the configure,
unconfigure, and change methods. This routine can also be called to return the Vital Product
Data (VPD) of the device. The following is a typical call to this subroutine from a
configuration method:

sysconfig(SYS_CFGDD, &cfg, sizeof(struct cfg_dd));

where sysconfig is a subroutine and cfg is a cfg_dd structure which is defined in
/usr/include/sys/sysconfig.h. The cmd field of the cfg_dd structure should contain one of
the following parameters:

• CFG_INIT
• CFG_TERM
• CFG_QVPD

If the routine is called with the CFG_INIT parameter, perform simple error checking to
ensure that the driver, as well as the device, is in the correct state. Any required data
structures should also be allocated and initialized with the values contained in the Device
Dependent Structure (DDS). The DDS should have been correctly built by the configuration
method and passed to the config routine through the cfg_dd structure which contains a field
that points to the DDS. After all data structures have been properly initialized, the device
switch table entry should be built and then entered using the devswadd kernel service.

If called with the CFG_TERM parameter, the routine should first check that the driver is in
the correct state and that the device is closed before deallocating associated data
structures, removing the driver from the device switch table, and changing the status of the
device to CLOSED in the device driver.

If the routine is called with the CFG_QVPD parameter, the driver should fill in the passed uio
structure with the appropriate information about the device and the driver and then return
this structure to the calling routine.

ioctl
This routine handles any I/O access to the SCSI device other than that which is handled by
the read and write routines. Any diagnostic capabilities and the standard IOCINFO
operation should also be handled by this routine.

Typical I/O requests are those that reset the device, obtain certain configuration parameters,
or perform various basic accesses to the device. This routine can also perform various
diagnostic functions once the device is opened in diagnostic mode. The IOCINFO operation
is used to return information specific to the device as well as statistics about the usage of
the device.



8-15SCSI Device Drivers

open
This routine opens a SCSI device by initializing any data structures, pinning the bottom half
of the driver code, registering and initializing and interrupt handlers, setting up any DMA
channels, and preparing any needed timers.

If the current open is the first open to the device, any global data structures as well as the
bottom half of the driver should be pinned using the pincode kernel service. The pinning of
the code and global data structures should occur before the device is able to generate
interrupts since the interrupt handler is usually placed in the bottom half of the driver.

The SCSI adapter should then be opened with the fp_open kernel service. Once this
operation completes, a SCIOSTART should then be issued for the device. If a forced open
was attempted on the device, then a bus device reset (BDR) must also be issued through
the SCIORESET operation. If the open operation was a diagnostic open, then processing is
usually complete at this point since all that is required for a diagnostic open is that the
appropriate data structures are pinned and the adapter is opened and started for the device.

If the open is a normal open, then an SCIOTUR operation should be issued to test for the
readiness of the SCSI device. An IOCINFO ioctl call should then be made to obtain any
necessary operating parameters for the driver.

The open routine should serialize its operation using simple locks. This prevents more than
one application from modifying driver data structures. Unlock the resource when the driver
has completed its processing to allow other applications to open SCSI devices.

Note that if any of the commands during the open operation fail, the device driver should
clean up before exiting with an error. This includes freeing any allocated memory, unpinning
any pinned code, and releasing any locks.

close
This routine closes the SCSI device by deallocating any data structures associated with the
device as well as unpinning any code or data. The adapter driver is also stopped and any
timers are also released.

Serialize the close routine so that no more than one application can modify the data
structures of a driver. Use simple lock kernel services to accomplish this.

If the device was opened in normal mode and the SC_RETAIN_RESERVE flag was not set,
then a release must be performed on the device to allow other initiators to reserve the
device. If the reservation is to be retained, then the release should not be performed.

A SCIOSTOP operation should now be issued to the adapter driver which should also be
closed using the fp_close kernel service.

read
This routine reads data from a SCSI device and returns it to the calling process through a
uio structure.

The driver must perform any parameter validation, command building, and cross memory
descriptor processing that might be necessry before calling the SCSI adapter strategy
routine through devstrat.  For block device drivers, if the read routine is merely a raw
interface, the uphysio routine should be called if the request falls on block boundaries.  The
uphysio routine will end up calling the device driver’s strategy routine.  If the request does
not fall on a block boundary, the driver should then break up the request into blocks.  Odd
sized transfers can then be handled by using devstrat to call the strategy routine after the
sc_buf structure has been correctly built.
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write
This routine writes data received through a uio structure from the calling process to a SCSI
device.

The write routine should be very similar to the read routine described above in the type of
prcessing that is required.

Bottom-Half Routines
This section discusses the following routines:

• strategy
• dump

strategy
Note: This routine is only present in drivers for block SCSI devices. This routine accepts a

linked list of buf structures, processes them, and determines the proper SCSI
command to send to the device to perform the required operation. The buf structure
is defined in the /usr/include/sys/buf.h header file.

This routine should also determine if requests made in successive buf structures can be
consolidated into one SCSI command. The request is placed on the I/O request queue for
future processing by the device driver.  Once a request is ready to be sent out to the device,
the adapter’s strategy routine should be called via the devstrat kernel routine.  The
adapter’s strategy routine takes a pointer to an sc_buf structure as its only parameter.

After the I/O operation has completed, the user-level calling routine’s iodone routine is
called through the iodone kernel service. The caller’s  iodone routine should have been
passed in the b_iodone field of the buf structure.

dump
This routine is needed if the device is to be used as a possible recipient of a system dump.
The dump routine should first disable interrupts to the INTIODONE level which are naturally
re-enabled at the end of the routine. Also, there are several commands, passed through the
cmd parameter, that the routine must handle.

For a DUMPINIT command, this routine should just call the adapter dump routine through
the devdump system call with a DUMPINIT command.

For a DUMPSTART command, this routine should just call the adapter dump routine through
the devdump system call with a DUMPSTART command.

For a DUMPQUERY command, this routine should just call the adapter dump routine
through the devdump system call with a DUMPQUERY command and then fill in the
dmp_query structure passed in through the arg parameter with the appropriate
information.

For a DUMPWRITE command, this routine should fill out an sc_buf structure for each iovec
structure passed in through the uio parameter.  A SCSI WRITE command should be
constructed into each of the sc_buf structures and the adapter’s dump routine should then
be called through the devdump system call with a DUMPWRITE command.  This should be
repeated until all the iovec structures have been processed.

For a DUMPEND command, this routine should just call the adapter dump routine through
the devdump system call with a DUMPEND command.

For a DUMPTERM command, this routine should just call the adapter dump routine through
the devdump system call with a DUMPTERM command.
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PVIDs
If a SCSI device is intended to contain a JFS filesystem, it must first meet two requirements.
The first is that even though the device is not a hard disk, the driver must respond as such
when it is issued an IOCINFO ioctl call. The device type must be either DD_DISK or
DD_SCDISK as defined in the header file /usr/include/sys/devinfo.h.

The second requirement is that the device must contain a Physical Volume Identifier (PVID)
so that it can be uniquely distinguished from other media on the system that contain
filesystems. The PVID is used by the system to keep track of media even if it is moved from
one SCSI ID to another or from one adapter to another.  This allows the Logical Volume
Manager (LVM) to maintain the consistency of volume groups (VGs) and logical volumes
(LVs) that span several physical storage devices.

Normally, once a PVID is written, it remains with the device until it is overwritten or somehow
damaged.  This implies that a PVID only needs to be written once for a newly added device.
New IBM hard disks will have a PVID assigned to them the first time they are configured on
a RISC System/6000 by the configure method for hard disks.  The system accomplishes this
by first performing a read of the IPL record area from each disk detected on the system. If
this area contains no PVID (the PVID value is 0), one is created and written out to the IPL
record area.  The PVID is created by the following scheme:

   #define makehex(x) ”0123456789abcdef”[x&15]

   struct unique_id           unique_id;
   struct utsname             uname_buf;
   long                       machine_id;
   struct timestruc_t         cur_time;
   int                        i;
   char                       pvidstr[33];
   char                       bdevice[64];
   int                        fd;
   IPL_REC                    clearipl;
   IPL_REC                    ipl_rec;
   off_t                      offset;   

   bzero((caddr_t) &unique_id, sizeof (struct unique_id));

   if (gettimer (TIMEOFDAY, &cur_time))
exit (–1);

   if (uname(&uname_buf))
exit (–1);  

   machine_id = 0;
   sscanf(uname_buf.machine, ”%8x”, &machine_id);  

 /* Note that words 3 and 4 remain 0 */
   unique_id–>word1 = machine_id;
   unique_id–>word2 = cur_time.tv_sec*1000 + cur_time.tv_nsec/1000000;  

 for(i=0;i<32;i++) {
   if (i&1)

pvidstr[i] = makehex(unique_id[i/2]);
else

pvidstr[i] = makehex(unique_id[i/2]>>4);
   }
   pvidstr[32] = ’\0’; 

  /* lname is the name of the disk */
   sprintf(bdevice,”/dev/r%s”,lname);
   fd = open(bdevice, O_RDWR);
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   if (fd < 0)
exit (–1);  

 offset = lseek(fd, PSN_IPL_REC, 0);
   if (offset < 0)

exit (–1); 

  if (read(fd, &ipl_rec, sizeof(ipl_rec)) < 0)
exit (–1);

   if (ipl_rec.IPL_record_id != (unsigned int) IPLRECID) {
/*
 * Boot record does not exist on disk yet.
 */

ipl_rec = clearipl;
ipl_rec.IPL_record_id = IPLRECID;

   }
   ipl_rec.pv_id = pvid;  

 offset = lseek(fd, PSN_IPL_REC, 0);
   if (offset < 0)

exit (–1);

   if (write(fd, &ipl_rec, sizeof(ipl_rec)) < 0)
exit (–1);

   close (fd);

Once the PVID has been created and stored to disk, it should also be added into the CuAt
database for the disk under the pvid attribute.

SCSI Device Attributes
The following is a list of standard attributes that apply to the SCSI devices that are
supported on the RISC System/6000. This list contains attributes most SCSI devices should
contain. It is not an exhaustive list since each device may require additional attributes,
depending on the implementation of each device.

model_name The name of the SCSI device that is returned in the inquiry string when an
SCIOINQU ioctl call is made to the device. It is usually a 16-byte character
string.

maxlun The maximum allowed value of the Logical Unit Number (LUN) for this
device. Currently, all supported IBM SCSI devices have a maxlun value of
zero. This indicates that only that particular device is allowed to occupy its
SCSI ID and instructs the SCSI adapter to cease searching for other
devices at other LUNs on the current SCSI ID.

pvid This attribute applies only to SCSI disks and contains the PVID value of the
disk which is stored in the boot record of the disk. The value is usually a
32-bit character string and its default value is “none” as stored in the
Predefined Attribute (PdAt) object class. Once a disk is assigned a PVID,
create a Customized Attribute (CuAt) object class entry that contains the
proper PVID value of the disk.

SCSI Configuration Methods
The configuration of SCSI devices is similar to the configuration of other devices on the
system.  Please refer to the Device Driver Configuration chapter elsewhere in this document
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for a detailed explanation of configuration methods and how they should be written.
However, there is an additional requirement that configuration methods for SCSI devices be
written to take care of PVIDs (Physical Volume Identifiers) if necessary.

The configure method should try to read the PVID from the disk after the disk has been spun
up and an INQUIRY command has been issued. If the disk has no PVID, then one should be
created and wriiten out if the media is allowed to contain an LV (logical volume) or
filesystem.  For information on how to accomplish this, see “PVIDs” on page 8-17.

If a non-NULL PVID is read, either of the following situations may exist:

• The device is already known to the system.
• The device is being moved from another RISC System/6000.

To determine which situation exists, the config method should scan the CuAt database for a
previous record of this PVID.  If none is found, then the disk should be assumed to be one
being moved from another system.

If a non-NULL PVID is read, then the config method should verify that the PVID stored in the
database is for the same logical name as the disk currently being configured. If so, then the
disk is in the same position as it was when it was last configured and the config method
does not need to perform any more PVID processing.

If a non-NULL PVID is read but its matching database entry does not match the logical
name of the device being currently configured, this is an indication that the device has been
moved from another location on the same system. If this occurs, calling the current parent
SCSI adapter’s config method will update the CuDv to correctly pair the device’s logical
name with its PVID.
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Chapter 9. Writing a Virtual File System

In addition to Journaled File System (JFS), Network File System (NFS), and the CD-ROM
file system types included within AIX, it is possible to write your own Virtual File System
(VFS). This may be desirable if you want to incorporate a new concept such as a distributed
file system, or to use a new device such as a WORM drive or tape jukebox, or simply for
performance reasons where a large amount of a specific type of data needs to be managed
in an unusual manner.

This chapter is intended as a continuation to the virtual file system information in
AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts.
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Multiple File System Types within the Kernel
Each type of file system is represented within the kernel by a struct gfs. Each mounted file
system is represented by a struct vfs which contains a pointer to the appropriate struct gfs.
These structures are the basis for file system related operations.

The vfs structures are in a linked list, regardless of file system type, with the kernel variable
rootvfs pointing to the first vfs structure in the list. The following vfs and gfs Structures figure
shows the relationship between vfs and gfs structures.
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rootvfs

vfs vmount

vfs_gfs

vfs_mdata

vfs_next
“/”

gfs
vnodeops
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vfs and gfs Structures

vfs_gfs

vfs_mdata
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The gfs structures each contain a pointer to a struct vnodeops, and a struct vfsops. These
structures contain a list of functions which have a standardized interface by which system
calls can invoke file related (with vnodeops), and file system related (with vfsops)
operations.
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You add new file system types to the kernel by loading the kernel extension into the kernel
using the sysconfig(KLOAD,...) subroutine and then invoking the config entry point of the
new kernel extension. The kernel extension contains the virtual file system dependent
functions.

This in turn creates a vnodeops structure and a vfsops structure, and initializes these
structures with addresses of the functions within the extension. A temporary gfs structure is
created, and the gfsadd kernel service is used to insert the gfs record into the kernel’s array
of gfs structures. At this point, the virtual file system type is usable, and file systems of the
new type can be mounted.

Data Structures within a Virtual File System
As already described, a gfs, vnodeops, and vfsops structure are created each time a new
file system kernel extension is added to the kernel.

When new file systems are mounted, a vfs and vmount structure are created. The vmount
structure contains specifics of the mount request, such as the object being mounted, and the
stub over which it is being mounted. The vfs structure is the connecting structure which links
the vnodes (representing files) with the vmount information, and the gfs structure.

The mount helper creates the vmount structure, and calls the vmount subroutine. The
vmount subroutine then creates the vfs structure, partially populates it, and invokes the file
system dependent vfs_mount subroutine which completes the vfs structure, and performs
any operations required internally by the particular file system implementation. See “Mount
Helper” on page 9-17 for more information about the mount helper.

Whenever a file is accessed, it is represented by a vnode structure, and an in-core inode
structure, which also contains a gnode structure, and possibly a copy of the disk i-node.
The vnode and gnode structures are file system independent, and the kernel can access
them directly. However, the kernel has no information about the internal storage of the data
files that the vnodes represent. To perform actions on a data file, the kernel passes a vnode
pointer to the relevant vnode operation listed in the vnodeops structure.

The following File System Data Structures figure shows the relationships of the various data
structures within a mounted sample file system my_fs. Note that in this file system type,
there is a copy of the disk i-node (my_dinode) within each in-core i-node (my_icinode).
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This figure also shows the way that the in-core i-node contains the gnode, which in turn
contains pointers both to the containing in-core i-node (gn_data), and a direct link back to
the vnodeops structure (gn_ops) for efficiency.
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File System Data Structures

The following sections contain descriptions of each of the file-system-independent
structures.
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gfs Structure
The gfs structure is defined in the sys/gfs.h header file:

struct gfs {
struct vfsops *gfs_ops;
struct vnodeops *gn_ops;
int  gfs_type; /* type of gfs (from vmount.h) */
char gfs_name[16]; /* name of vfs (eg. ”jfs”,”nfs”, .)*/
int  (*gfs_init)(); /* ( gfsp ) – if ! NULL, */

/* called once to init gfs */
int gfs_flags; /* flags for gfs capabilities */
caddr_t gfs_data; /* ptr to gfs’s private config data*/
int (*gfs_rinit)();
int gfs_hold /* count of mounts of the ...  */

}

There is one gfs structure for each type of virtual file system currently installed on the
machine. For each gfs entry, there may be any number of vfs entries.

The gfs structures are stored within a global array accessible only by the kernel. The gfs
entries are inserted with the gfsadd kernel service. Only one gfs entry with a given gfs_type
can be inserted into the array. Generally, gfs entries are added by the CFG_INIT section of
the configuration code of the file system kernel extension.

The gfs entries are removed with the gfsdel kernel service. This is usually done within the
CFG_TERM section of the configuration code of the file system kernel extension.

The operating system uses the gfs entries as an access point to the virtual file system
functions on a type-by-type basis. There is no direct link from a gfs entry to all of the vfs
entries of a particular gfs type. The file system code generally uses the gfs structure as a
pointer to the vnodeops structure and the vfsops structure for a particular type of file
system, although the gnodes also contain a pointer to the vnodeops structure for their type
of file system.

vfs structure
The vfs structure is defined in the sys/vfs.h header file:

struct vfs {
struct vfs    *vfs_next;      /* vfs’s are a linked list */
struct gfs    *vfs_gfs;       /* ptr to gfs of vfs */
struct vnode  *vfs_mntd;      /* pointer to mounted vnode, */
                              /*      the root of this vfs */
struct vnode   *vfs_mntdover; /* pointer to mounted–over */
                              /*      vnode */
struct vnode   *vfs_vnodes;   /* all vnodes in this vfs */
int            vfs_count;     /* number of users of this vfs */
caddr_t        vfs_data;      /* private data area pointer */
unsigned int   vfs_number;    /* serial number to help */
                              /*  distinguish between */
                              /*  different mounts of the */
                              /*  same object */
int            vfs_bsize;     /* native block size */
short          vfs_rsvd1;     /* Reserved */
unsigned short vfs_rsvd2;     /* Reserved */
struct vmount  *vfs_mdata;    /* record of mount arguments */

};
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There is one vfs structure for each file system currently mounted.

New vfs structures are created with the vmount subroutine. This subroutine calls the
vfs_mount subroutine found within the vfsops structure for the particular virtual file system
type.

The vfs entries are removed with the uvmount subroutine. This subroutine calls the
vfs_umount subroutine from the vfsops structure for the virtual file system type.

The vfs structure is central to each mounted file system. It provides access to the vnodes
currently loaded for the file system, mount information through the vfs_mdata pointer, and
provides a path back to the gfs structure and its file system specific subroutines through the
vfs_gfs pointer.

The vfs structures are a linked list with the first vfs entry addressed by the rootvfs variable
which is private to the kernel. The vfs_mntd pointer points to the vnode within the file system
which generally represents the root directory of the file system. The vfs_mntdover pointer
points to a vnode within another file system, also usually representing a directory, which
indicates where the file system is mounted. In this sense, the vfs_mntd pointer corresponds
to the object within the vmount structure referenced by the vfs_mdata pointer, and the
vfs_mntdover pointer corresponds to the stub within the vmount structure referenced by the
vfs_mdata pointer.

Refer to the “Mount Helper” section on page 9-17 for details of the vmount structure.

vnode structure
The vnode structure is defined in the sys/vnode.h header file:

struct vnode {
        ushort  v_flag;         /* see definitions below                */
        ulong   v_count;        /* the use count of this vnode          */
        int     v_vfsgen;       /* generation number for the vfs        */
        Simple_lock v_lock;     /* lock on the structure                */
        struct vfs *v_vfsp;     /* pointer to the vfs of this vnode     */
        struct vfs *v_mvfsp;    /* pointer to vfs which was mounted over this */
                                /* vnode; NULL if no mount has occurred */
        struct gnode *v_gnode;  /* ptr to implementation gnode          */
        struct vnode *v_next;   /* ptr to other vnodes that share same gnode */
        struct vnode *v_vfsnext; /* ptr to next vnode on list off of vfs */
        struct vnode *v_vfsprev; /* ptr to prev vnode on list off of vfs */
        union v_data {
                void *          _v_socket;       /* vnode associated data */
                struct vnode *  _v_pfsvnode;     /* vnode in pfs for spec */
        } _v_data;
        char *  v_audit;         /* ptr to audit object                 */
};

Vnodes are the primary handles by which the operating system references files. Most vnode
operations are passed a pointer to a vnode as their first parameter.

Vnodes are created by the vfs-specific code when needed, using the vn_get kernel service.

Vnodes are deleted with the vn_free kernel service.

Vnodes are the result of a path resolution. Each time an object (file) within a file system is
located (even if it is not opened), a vnode for that object is located (if already in existence),
or created. Naturally, vnodes for each directory searched to resolve the path are also
created, or referenced. Vnodes are also created for files as the files are created.

The vnode structure provides the link between the vfs structure and the gnode structure.
There are two vnodes for one gnode only in the case of file-over-file mounts. In this case,
the gnode refers to the first related vnode, and the other vnodes for that gnode are linked
using the v_next field.
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gnode structure
The gnode structure is defined in the sys/vnode.h header file:

struct gnode {
        enum vtype gn_type;             /* type of object: VDIR,VREG,... */
        short   gn_flags;               /* attributes of object         */
        ulong   gn_seg;                 /* segment into which file is mapped */
        long    gn_mwrcnt;              /* count of map for write       */
        long    gn_mrdcnt;              /* count of map for read        */
        long    gn_rdcnt;               /* total opens for read         */
        long    gn_wrcnt;               /* total opens for write        */
        long    gn_excnt;               /* total opens for exec         */
        long    gn_rshcnt;              /* total opens for read share   */
        struct vnodeops *gn_ops;
        struct vnode *gn_vnode; /* ptr to list of vnodes per this gnode */
        dev_t   gn_rdev;        /* for devices, their ”dev_t” */
        chan_t  gn_chan;        /* for devices, their ”chan”, minor’s minor */

        Simple_lock     gn_reclk_lock;  /* lock for filocks list        */
        int             gn_reclk_event; /* event list for file locking  */
        struct filock  *gn_filocks;     /* locked region list           */

        caddr_t gn_data;        /* ptr to private data (usually contiguous) */
};

A gnode refers directly to a file (regular, directory, special, and so on), and is usually
embedded within a file system implementation specific in-core i-node.

Gnodes are created as needed by file system specific code at the same time as creating
in-core i-nodes. This is normally immediately followed by a call to the vn_get kernel service
to create a matching vnode.

The gnode structure is usually deleted either when the file it refers to is deleted, or when its
in-core i-node is removed to make room for an in-core i-node representing a more recently
accessed file.

In early UNIX virtual file system implementations, the vnode represented the file system
independent information about a file, and the in-core i-node was totally file system
implementation specific. In AIX, the gnode is a part of the in-core i-node which is uniform,
but the remainder of the in-core i-node remains implementation specific.

File-Over-File Mounts
It is possible to have more than one vnode referring to a gnode. This occurs when a file is
mounted over another file. In this case, the v_mvfs field within the vnode of the file which is
being mounted over is set to point to a newly created vfs structure. The new vfs structure
represents a file system with one file, whose vnode points to the gnode of the file which is
mounted.
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The following File-Over-File Mounts figure shows the situation where a file in /tmp is
mounted over a file in /u. Note that the gnode points to one of the vnodes which is linked to
the next vnode for that gnode with the v_next field.
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Components of a Third-Party Virtual File System
The following are the basic components that you must provide to implement a virtual file
system for the AIX operating system:

1. The kernel extension containing initialization functions, vfs operations, vnode operations,
and virtual memory operations.

2. A file system helper or some other mechanism to create file systems on media.

3. A mount helper or a specialized mount command.

4. A configuration program to load the kernel extension into the kernel.

5. A software installation package (preferably an installp package) to install the software on
a customer’s computer, and modify /etc/vfs.
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Creating the Virtual File System Kernel Extension
The virtual file system kernel extension is similar to a driver in that it runs in kernel mode and
has a configuration entry point. Considerations for compiling and linking are also similar.

The following is an example of Makefile entry for building a virtual file system kernel
extension:

 CFLAGS  =  –O –D_AIX –D_SUN –D_KERNEL  –DKERNEL –I../.. –I. –qxref –qlist 
 CDEFS   = –U_STR_ –U_MATH_ –D_KERNEL –D_AIX –D_IBMR2    \ 
         –DMACHINE=_IBMR2 ’–DMACHNAME=”R2_System”’       \ 
         –DNLS –D_NLS –DMSG –Daiws –Dunix 
     
 all:    my_vfs 
     
 my_vfs: my_vfsops.o my_vnopeops.o  
         /bin/ld –b”binder:/usr/lib/bind glink:/lib/glink.o” \ 
            –s –D0 –H512 –T512                               \ 
            –lcsys –lsys                                     \ 
            –b”I:/lib/kernex.exp I:/lib/syscalls.exp E:myfs_t.exp 
 map:sym.myfs_t”                       \ 
            –e myfs_config             \  
            my_vfsops.o my_vnodeops.o  \  
            –o my_vfs 
     
 my_vnodeops.o:  my_vnodeops.c myfs.h 
         ${CC} ${CFLAGS} ${CDEFS} –c my_vnodeops.c 2> $*.err 
     
 my_vfsops.o:    my_vfsops.c myfs.h 
         ${CC} ${CFLAGS} ${CDEFS} –c my_vfsops.c 2> $*.err
 

Note: To bring in the appropriate version of printf and have debugging statements appear
on the terminal, do not use cc for the linking phase of the operation.

Entry Points within the File System Kernel Extension
This section describes the config, init, and rootinit entry points.

config
int myfs_config (int cmd, struct uio *uiop);

The primary entry point within the file system kernel extension is the config entry point. The
configuration program calls this entry point once the kernel extension is loaded. The
configuration routine to which the config entry point refers usually consists of a case
statement which switches based on the command passed in. The two cases which should
be taken into account are CFG_INIT and CFG_TERM. However, you can add more
commands.

The CFG_INIT branch should:

1. Check that the extension has not already been initialized.

2. Initialize any private data structures.

3. Create and add an entry into the gfs table using the gfsadd kernel service. This calls the
init entry point from the gfs structure.

4. Register the page fault handler (strategy routine) using the vm_mount kernel service.

5. Pin any code or data within the file system which must not be paged. For example, pin
interrupt handlers or the strategy routine.
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The CFG_TERM branch should:

1. Verify that it is safe (appropriate) to terminate the extension. For example, verify that the
file system has been unmounted.

2. Remove the gfs struct entry using the gfsdel kernel service.

3. Unpin the areas pinned during the CFG_INIT.

init
int myfs_init (struct gfs *gfsp);

This routine is called by the gfsadd kernel service immediately after creating the gfs
structure. The address of the function is passed into gfsadd within the gfs_init field of
the gfs structure. Any functions that must be performed after the gfs entry is created but
before users can start to use the file system should be performed here.

The most common operation within this function is to initialize file system dependent
structures. The function may also spawn a pager process using the creatp and initp kernel
services.

rootinit
This function is only called for the root file system. The entry point is passed to the gfsadd
kernel service in the gfs_rinit field of the gfs structure. The most common operations
are to initialize the root vmount and vfs structures, and to open the root device.

VFS Operations within the File System Kernel Extension
The vfs operations are those operations which affect an entire file system, such as:

• mount
• unmount
• sync

The addresses of these functions are stored within a vfsops structure that is pointed to by
the gfs_ops field of the gfs structure for a particular virtual file system implementation.

For specific details of the vfs operations requirements, see the AIX Version 4.1 Kernel
Extensions and Device Support Programming Concepts book.

The following are descriptions of the vfs operations for a typical virtual file system.

vfs_mount
int myfs_mount(struct vfs *vfsp, struct ucred *crp);

This routine is called by the vmount subroutine, and performs the following actions in
addition to any internal work required:

1. Extract important data passed by the mount helper program in the vfsp–>vfs_mdata
field.

2. Obtain the vnode of the object being mounted with the lookupvp kernel service.

3. Check that the object being mounted is appropriate.

4. Initialize the following fields within the vmount structure (pointed to by vfsp–>vfs_mdata):

– vmt_fsid
– vmt_vfsnumber
– vmt_time

5. If applicable, call vm_mount to register the file system’s strategy routine.
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6. Create a vnode (and matching in-core i-node) for the root directory of the file system, and
initialize the v_mvfsp field of the stub vnode (pointed to by vfsp–>vfs_mntdover) with its
address.

7. Use the vn_rele vnode operation to release the object’s vnode.

vfs_unmount
int myfs_unmount(struct vfs *vfsp,int flags, struct ucred *crp);

This routine is called by the umount subroutine. This routine performs the following actions:

1. Free up any resources used by this mount, including vnodes, using the vn_free vnode
operation.

2. Set the v_mvfsp field of the vnode for the stub to NULL.

3. Set vfsp–>vfs_mntd to NULL.

4. Call the vm_umount kernel service to unregister the file system’s strategy routine.

5. Call the vfsrele kernel service to release the system-created resources.

vfs_root
int myfs_root(struct vfs *vfsp, struct vnode **vpp,
               struct ucred *crp);

This routine is frequently called when locating files within a file system. Essentially, it finds,
or creates a vnode (associated with an in-core i-node) for the root of the file system (that is,
the file containing the root directory). Before returning success, the routine should check that
the file system is mounted, and calls the vn_hold vnode operation for the vnode it is about
to return.

vfs_statfs
int myfs_statfs(struct vfs *vfsp, struct statfs *statfsp,
                 struct ucred *crp);

The vfs_statfs routine returns basic file system statistics in the form of a statfs structure.
See the sys/statfs.h header file for the fields of the statfs structure. The methods to obtain
this information are implementation dependent.

vfs_sync
int myfs_sync();

Every 60 seconds, and whenever the sync command is run, the sync function is called.
This in turn calls the vfs_sync function once for each different file system type. Note that a
pointer to a gfs structure is passed in.

The actual use of this routine is totally implementation dependent, but once completed each
file system of the same gfs type should be updated on secondary storage (assuming there
is any) to the point where it is consistent.

vfs_vget
See File Systems Operations in AIX Version 4.1 Technical Reference, Volume 5: Kernel and
Subsystems.

vfs_cntl
See File Systems Operations in AIX Version 4.1 Technical Reference, Volume 5: Kernel and
Subsystems.
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Vnode Operations within the File System Kernel Extension
The vnode operations are the operations that work on specific files (represented by vnodes)
within a file system. This section covers the required vnode operations.

See File Systems Operations in AIX Version 4.1 Technical Reference, Volume 5: Kernel and
Subsystems for details on the requirements for the vnode operations.

vn_hold
int myfs_hold (struct vnode *vp);

This routine simply increments the v_count field (the usage count) of the vnode.

vn_rele
int myfs_rele (struct vnode *vp);

This routine decrements the usage count of the vnode. If the usage count is reduced to
zero, remove the vnode from memory using the vn_free vnode operation.

It is practical to release the related in-code i-node at this point, assuming (as is normal) that
this is the only vnode referencing the in-core i-node.

Check that the file system was being unmounted but could not complete because there were
still open files (vfsp–>vfs_flag & VFS_UNMOUNTING). If this was the last vnode for the file
system (vfsp–>count == NULL), call the vfsrele kernel service to release the vfs entry and
complete the unmount.

vn_getattr
int myfs_getattr (struct vnode *vp, struct vattr *ubuf, 
                   struct ucred *crp);

This routine obtains the attributes of the file referenced by vp from the related gnode and
in-core i-node which is in a file-system specific format, and returns the information in a vattr
structure.
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The following shows the vattr structure as defined in the sys/vattr.h header file:

struct vattr {
enum vtype va_type; /* from gnode.gn_type*/
mode_t va_mode; /* access modes from in–core i-node*/
uid_t va_uid; /* user id from in–core i-node*/
gid_t va_gid; /* group id from in–core i-node*/
union {

dev_t _va_dev;
long _va_fsid; /* vfs_mdata–>vmt_fsid.fsid_dev*/

} _vattr_union;
long va_serialno; /* i-node numberfrom in–core i-node*/
short va_nlink; /* number of links to fil from in–core

i-node*/
long va_size; /* file size in bytes from in–core i-node*/
long va_blocksize; /* block size for file system */
long va_blocks; /* blocks reserved for file

from in–core i-node*/
struct timeval va_atime;/* last file access time

from in–core i-node*/
struct timeval va_mtime;/* last file modification

time from in–core i-node*/
struct timeval va_ctime;/* last disk i-node modification

time from in–core i-node*/
dev_t va_rdev; /* from gnode.gn_rdev*/
long va_nid; /* use unamex(), field nid*/
chan_t va_chan; /* from gnode.gn_chan*/
char *va_acl; /* Access Control List*/
int va_aclsiz;/* size of ACL*/
int va_gen: /* inode generation number */

};

vn_open
int myfs_open (struct vnode *vp, int flags, int ext,
                caddr_t vinfop, struct ucred *crp);

The vn_open routine should check the validity of the operation, in particular any file-system
dependent tests, such as the requested open mode conflicting with the mode in which the
file is already opened by another process.

The file can be bound in at this point, or the binding can be delayed until the first read or
write to the file. See the “Virtual Memory Operations” section on page 9-15 for information
on binding.

This routine should also increment the appropriate usage counter within the gnode
(gn_rdcnt, gn_wrcnt, or gn_excnt).

vn_close
int myfs_close (struct vnode *vp, int flags,caddr_t vinfo,
                 struct ucred *crp);

The close routine calls vn_close routine. Any usage counters incremented by the vn_open
call should be decremented. Do not remove the vnode within vn_close, this is done within
vn_rele.
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vn_strategy
int myfs_strategy (struct buf *bp);

The strategy routine is called by the virtual memory manager when a page of memory is
referenced that is mapped to a file, but the memory has not been paged in. Usually, this
routine simply places the buffer on the list of pending work for the pager, and wakes the
pager.

The buffer pointer passed in will have the following values in its fields:

b_bcount Always PAGESIZE (4K).

b_blkno The 512-byte block number of the offset within the file (0, 8, 16, and so on).

b_baddr The 4K offset within the mapped segment.  This rolls over to zero once a
256-MB segment is crossed.

av_forw Non-null if there are multiple requests to process. This will happen if the
virtual memory manager attempts to perform read ahead operations.

b_flags Set to B_READ for a read operation, B_WRITE for a write operation and
(B_READ | B_PFSTORE) for a read before a write operation.

vn_rdwr
int myfs_rdwr (struct vnode *vp, enum uio_rw op, int flags,
               struct uio *uiop, int ext, caddr_t vinfo,
               struct vattr *vattrp, struct ucred *crp);

This routine performs file (not directory) reads or writes. Follow these procedures:

1. Verify that the file type is correct.

2. Return success if the transfer size is zero.

3. Return EINVAL if the start offset is negative.

4. Verify that the file is mapped. If it is not mapped in, map it using the vms_create kernel
service.

5. Use vm_move to copy the data from the source to the destination, reducing the transfer
length on reads that go past the end of the file.

Note: The vm_move amounts to a copy which can page fault.

vn_lookup
int myfs_lookup(struct vnode *dp, struct vnode **vpp, 

char *name, int flags, struct ucred *crp);

This routine finds the file name which is the basename of a file in the directory dp, and
returns a vnode pointer for the file. If the file is not found, set vpp to NULL.

vn_readdir
int myfs_readdir (struct vnode *vp, struct uio *uiop,
                   struct ucred *crp);

This routine is called to read directories, which it returns in file-system independent format
using a dirent structure. Even read and fread call this routine if the file is a directory, and
the directory contents are reconstituted (imperfectly) from the structures.

Read directory entries from the directory starting with the first entry at or beyond
uiop–>uio_offset. Entries are read into an internal buffer while the buffer size is less than the
uio–>resid passed in (which is 4K), or until the end of the directory is reached. You do not
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need to place empty directory entries in the buffer. The buffer should be filled in with as
many entries as possible.

The buffer is then copied back into user space using the uiomove kernel service which
updates uio–>uio_resid. The vn_readdir routine then updates uiop–>uio_offset to be the
offset within the directory of the next unread entry.

If the routine is called with no directory entries beyond the uio_offset, the routine should
return with uio_resid untouched.

The following listing shows the fields of the dirent structure as found in the sys/dir.h header
file:

#define _D_NAME_MAX 255
struct  dirent {

ulong_t d_offset; /* offset within directory file
of next directory entry */

ino_t d_ino; /* i-node number of entry */
ushort_t d_reclen; /* Use DIRSIZ(struct dirent *)

after d_namlen is initialized */
ushort_t d_namlen; /* strlen(d_name field)*/
char d_name[_D_NAME_MAX+1];

/* name must be no longer than this including the ’\0’ */
};

Virtual Memory Operations
Once a file is opened, it is bound into an address range. This address range is not in either
the user or kernel space, but is inserted into the kernel address space on a temporary basis
by vms_create.

Accesses to this range may cause page faults which cause the registered strategy routine
to be called. The strategy routine then arranges for the information to be paged in or out
without itself page faulting. For this reason, pin the strategy routine and any data areas it
uses.

A separate process can be started to handle page faults as requested by the strategy
routine, and this process is under no obligation to avoid page faulting.

Binding the File to an Address Range
To bind a file to an address range, call the vms_create kernel service. This reserves part of
the 52-bit virtual memory address space of the machine, and associates it with the gnode
passed in. The vmid passed back is effectively a segment register value, which should be
placed in the gn_seg field of the gnode structure. This is typically done by the file system’s
open routine or by the read/write function (upon the first I/O attempt).

On subsequent reads or writes to the file, the vn_rdwr subroutine passes this vmid to
vm_move, along with transfer length, uio pointer and so on. Then vm_move places the
address space of the file within the kernel address space long enough to perform the
transfer.

For more information on vms_create, refer to kernel services in AIX Version 4.1 Technical
Reference, Volume 5: Kernel and Subsystems.

The Page Handling Process
The pager for a virtual file system may run as a separate process, a process spawned by
the vfs_init subroutine. The routine uses the e_sleep_thread kernel service on a list of buf
structures to which the vn_strategy subroutine appends further entries. Once the list
contains at least one request, the pager parses the buf structures, and in many virtual file
system implementations, attempts to order them depending upon the situation.
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For instance, buffers may be separated into requests for different media so that one disk
does not need to wait until another disk has completed a series of transfers. Or the requests
may be ordered to optimize disk seek sequencing.

Paging a Block In or Out
The actual technique used to page a block in or out varies greatly between virtual file
systems. In a situation where the file system resides directly on media, such as in the
CD-ROM file system, the buf structures are modified to contain the actual device block
number, and device IDs, then the devstrat(bufp) kernel service is called by the page fault
handler. This calls the strategy routine within the device driver to perform the transfer.

Once the data is transferred, call the iodone(bp) kernel service to notify the virtual memory
manager that the memory space is now valid.

File System Helper
The file system helper for a virtual file system type is listed in the /etc/vfs file. This program
is called by AIX system management programs, usually to operate on an unmounted file
system. Examples include:

fsck Calls the file system helper to perform an implementation-dependent check
of the contents of a file system.

mkfs Invokes the file system helper to create a file system.

chfs Uses the file system helper to extend a file system.

An example of an entry in the /etc/filesystems file follows:

 /mymnt:       
         dev             = /dev/fd0  
         vfs             = myfs    
         mount           = true    
         options         = rw        
         type            = myfs      
         nodename        = myfs
     

For the preceding example, the command:

mkfs /mymnt

translates to a call to the file system helper with the following parameters:

fshop_make 5 5 7 –ip 0 \
name=/tmp/my_vfsd,label=/tmp/my_vfsd,dev=/tmp/my_vfsf

Note: The fshop_make is not the name of the file system helper. The subcommand
argv[0] is set to a name other than the program name using the execlp subroutine.

We suggest that third-party virtual file system writers use argv[1], which is a command from
the fshelp.h file such as FSHOP_MAKE.

The command:

fsck –v myfs

translates to the following call:

fshop_check 1 3 6 –ifp 0 device=/dev/hd1,mounted
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The basic subcommands are:

argv[A_NAME (=0)]
The command in char * format.

argv[A_OP (=1)]
The command as an entry from the fshelp.h file.

argv[A_FSFD (=2)]
File descriptor number for the file system.

argv[A_COMFD (=3)]
File descriptor number for pipe.

argv[A_MODE (=4)]
Mode flags. For example, i = FSHMOD_INTERACT_FLAG.

argv[A_DEBG (=5)]
Debug level.

argv[A_FLGS (=6)]
Operation-dependent flags.

The functions performed by any file system helper are not fixed. Implement only those
appropriate to a virtual file system. Furthermore, it is acceptable for some functions to be
omitted, and implemented as separate programs, although the AIX commands will not be
able to invoke them.

Mount Helper
The format of the mount helper is similar to that of the file system helper. The mounting
program may be in any format, but for it to be invoked by the AIX mount command it should
be listed as the mount helper in the /etc/vfs file, and conform to the following invocation
format:

argv[0] The command path

argv[1] Command (M=mount, U=unmount)

argv[2] Debug Level

argv[3] Nodename

argv[4] Object (the file system being mounted)

argv[5] Stub (the directory that the file system is mounted over)

argv[6] Options (for example, “rw” = read/write)

The basic operations of the mount helper are:

1. Checks that the operation is valid.

2. Allocates space for a vmount structure with enough space at the end for the additional
parameters. See the sys/vmount.h header file for information on the vmount structure.

3. Populates the vmount structure.

4. Calls vmount (vmountptr, size_of_vmount_struct).
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The contents of the vmount structure are defined as follows:

#define VMT_OBJECT 0 /* I index of object name */
#define VMT_STUB 1 /* I index of mounted over stub name */
#define VMT_HOST 2 /* I index of (short) hostname */
#define VMT_HOSTNAME 3 /* I index of (long) hostname */
#define VMT_INFO 4 /* I index of binary vfs specific info */

/* includes network address, opts, etc*/
#define VMT_ARGS 5 /* I index of text of vfs specific args*/
#define VMT_LASTINDEX 5 /* I the last in the array of structs */
struct vmount {

ulong vmt_revision; /* revision level, currently 1 */
ulong vmt_length; /* length of structure and data */
fsid_t vmt_fsid; /* Do not set */
int vmt_vfsnumber; /* Do not set */
time_t vmt_time; /* Do not set */
ulong vmt_timepad; /* Do not set */
int vmt_flags; /* general mount flags */
int vmt_gfstype; /* type of gfs, e.g. MNT_JFS */
struct vmt_data {

short vmt_off; /* I offset of data, word aligned */
short vmt_size; /* I actual size of data in bytes */

} vmt_data[VMT_LASTINDEX + 1];
};

Note: The vmt_off field is the offset from the start of the vmount structure to the start of
the data element.

The following is an example of a hexadecimal dump of a vmount structure:

0000: 00000001 0000006c 00000000 00000000 .... ...l .... ....
0010: 00000000 00000000 00000000 00000000 .... .... .... ....
0020: 00000008 003c000e 004c000e 005c0002 .... .<.. .L.. .\..
0030: 00600002 00640004 00680003 2f746d70 .‘.. .d.. .h.. /tmp
0040: 2f64656d 6f766673 66000000 2f746d70 /dem ovfs f... /tmp
0050: 2f64656d 6f766673 64000000 2d000000 /dem ovfs d... –...
0060: 2d000000 00000000 72770000 00000000 –... .... rw.. ....

Virtual File System Configuration Program
You must load the virtual file system kernel extension in much the same way as a driver.
This operation can be performed by a separate program that is invoked by an rc script, or
preferably, as a rule in the Config_Rules database. It can also be invoked by the mount
helper when the first file system of a particular type is mounted.

Load the kernel extension with the sysconfig subroutine:

sysconfig (SYS_KLOAD,...)

Then use sysconfig to call the configuration entry point of the extension:

sysconfig (SYS_CFGKMOD,...)
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The following is an example of using the sysconfig subroutine:

struct cfg_load load;
struct cfg_kmod kmod;
.
.
.
load.path = kern_ext_name;
if( sysconfig( SYS_KLOAD, &load, sizeof(load) ) == –1 ){

fprintf (stderr, ”Unable to SYS_KLOAD %s, errno = %d\n”,
    load.path, errno );

exit(1);
}

fprintf( stderr, ”loaded at 0x%08x\n”, load.kmid );

/* initialize extension */
kmod.kmid = load.kmid;
kmod.cmd = CFG_INIT;
kmod.mdiptr = (caddr_t) &kmod.kmid;
kmod.mdilen = sizeof( kmod.kmid );

if( sysconfig( SYS_CFGKMOD, &kmod, sizeof(kmod)) == –1 ){
fprintf( stderr,

”Unable to configure module, errno=%d\n”,
errno);

exit(1);
}

During development, and for some file system implementations, you may want to unload the
kernel extension. To do this, use the following calls:

kmod.cmd = CFG_TERM;
sysconfig (SYS_CFGKMOD, &kmod,...);
sysconfig (SYS_KULOAD, &load,...);

Software Installation Package
You should package your software in the form of an installp module, because this is the form
in which customers expect to receive software for AIX Version 4.1. See “Software Product
Packaging” in AIX Version 4.1 General Programming Concepts Volume 1: Writing Programs
for more information.

In addition to installing the software in the customer’s system, the installation program also:

1. Appends an entry into the /etc/vfs file for the new file system type. For example:

my_fs 8 /etc/helpers/my_fsmnthelp /etc/helpers/my_fshelper

2. (Optional) Inserts a new rule into the Config_Rules database to invoke the kernel
extension installation program during system startup.

3. (Optional) Creates an initial entry in /etc/filesystems.
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/etc/vfs
The /etc/vfs file describes the currently installed virtual file systems. Entries include:

• Comment lines, which start with a #.

• The general control line which defines the default local, and (optionally) the default
remote virtual file system. This is typically:

%defaultvfs jfs nfs

• VFS entries that consist of:

name The name of the vfs type.

type The number of the vfs type.

mount-helper The name of the mount helper, or “none”. This is with respect to
/etc/helpers unless it starts with a / (slash).

file system-helper
Same conventions as mount-helper.

Use white space to separate these fields.

For a user file system, use numbers from MNT_USRVFS (=8) to MNT_AIXLAST (=15) for
the type. These values are defined in the sys/vmount.h header file. IBM reserves the right
to assign file system numbers between zero and MNT_USRVFS – 1 (=7).

Once the example file system “my_fs” is inserted, the end of /etc/vfs contains:

%defaultvfs jfs nfs
#
cdrfs 5 none none
jfs 3 none /etc/helpers/v3fshelper
nfs 2 /etc/helpers/nfsmnthelp

none remote
my_fs 8 /etc/helpers/my_fsmnthelp

/etc/helpers/my_fshelper

Loading the File System Kernel Extension during System Startup
The easiest way to load the kernel extension into the kernel during system startup is to
insert a new rule into the Config_Rules database. To do this, create a file with the new rule
in it. Our sample file is named my_fs_rule.add:

Config_Rules:
phase = 2
seq = 0
rule = ”/etc/methods/installmy_fs –a /etc/drivers/my_fs”

To install the rule, use the following ODM commands:

odmdelete –q ”rule LIKE ’*my_fs*’” –o Config_Rules
odmadd my_fs_rule.add

The odmdelete command deletes old Config_Rules entries which may have been inserted
for this virtual file system. If you use the odmadd command twice without odmdelete, there
will be two rules in the database, and the extension installation program will be invoked
twice.

Do not use this technique during development, as a faulty kernel extension could prevent a
successful system startup. Instead, add the rule at the end of the development cycle when
the extension is stable.
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Glossary
Disk i-node A disk i-node is an i-node that resides on a disk (or some other secondary

storage). Generally, this i-node contains all of the information about a file
which also resides on the disk except its name (which is in one or more
directories), and its contents (which are stored in the data area reserved for
the file). This information includes file type, size, permissions, access times,
and data location information (assuming the file is a data file, not a special
file). Disk i-nodes are referred to by their i-node number which is unique
within a particular file system.

gfs entry A gfs structure exists for each TYPE of virtual file system that is being used
within the system. For example, there is one gfs structure for the Journaled
File System (JFS) regardless of the number of JFS file systems currently
mounted, and if there are any NFS mounts, there is one gfs structure for
NFS. The gfs structure provides the system with a set of pointers to the
standardized functions for a file system type.

gnode A gnode is a data structure containing information about a file that is
currently (or has recently) being referenced. The gnode is effectively an
extension of the vnode, and contains the information which is directly
associated with the file, independent from the vfs by which the file is being
accessed. There can only be one gnode within a system for a particular file
at any one time. The gnode is a system-defined structure (that is, vfs
independent), contained within an in-core i-node which is vfs dependent.

in-core i-node An in-core i-node is a data structure maintained by a file system kernel
extension which represents a file on disk. The structure of the in-core i-node
is implementation dependent; however, it contains a gnode structure that is
implementation independent. It is common that the in-core i-node also
contain a copy of the disk i-node for the file it represents.

virtual file system (vfs)
A virtual file system represents a conventional mounted file system. The
purpose of having virtual file systems is so that the kernel, and system calls
need not know anything about the file system internals, but rather they can
perform file system operations, and file operations through a defined
interface that is independent of the data storage format or media.

vnode A vnode is a data structure representing a file within a virtual file system.
Accesses by system calls to a file are performed using a vnode pointer
which provides an implementation independent interface. Each vnode
contains a pointer to the vfs which contains it, and to the gnode which
contains limited information about the file, and a pointer to the in-core
i-node that contains the implementation specific data about the file.
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Chapter 10. STREAMS-Based TTY Subsystem Interface

This chapter describes the programming interface of the tty subsystem. This interface can
be used by a tty programmer to write a specific module (such as a converter or a line
discipline), or a specific driver.

The following information is provided:

• The description of the tty modules and drivers and especially the protocol used in the
exchange of STREAMS messages.

• The way the tty subsystem is integrated in a multiprocessor environment.

• The list of the IOCTL operations relating to the tty subsystem.

• The tty data structures extracted from the str_tty.h file where tty constants, functions and
messages are defined.

Note: Because the tty subsystem is based on STREAMS, a good knowledge of STREAMS
concepts is highly recommended. See Related Information on page 10-28.

Overview
The tty subsystem is based on STREAMS. The stack structure of a tty stream is made up of
the following modules:

• The stream head, which processes the user’s requests. It is common to all tty devices,
regardless of the line discipline or tty driver in use.

• The tioc module. It is provided to facilitate processing of the transparent ioctl operations.

• The line discipline (ldterm, sptr or slip).

• The stream end. It is a tty driver (cxma, lft, lion, rs, or sf) or pseudo-driver (pty).

The tty stream may also contain:

• An optional character mapping module (nls). It is a converter module pushed above the
tty driver to support input and output data mapping. The nls module uses the input and
output map files provided by the setmaps command.

• A pair of optional converters to convert upstream and downstream data. An upper
converter module is pushed above the line discipline and a lower converter module is
pushed below the line discipline. (For example, uc_sjis and lc_sjis are the upper and
lower converters used to convert IBM-932 code set into or from the EUC code set
handled by the ldterm line discipline.)

Note: The optional modules are not described in this chapter. See “The TTY Subsystem” in
AIX Version 4.1 General Programming Concepts Volume 1: Writing Programs for
more information.

The following figure shows the tty stream structure for a terminal and for a serial printer. The
line discipline for a terminal is ldterm. The line discipline for a serial printer is sptr and the
stream structure is simpler (the converters, and nls modules are not needed.)
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User modules can also be added or can replace the standard tty modules or drivers to
support other specific functionalities.

The means of communication within a stream are messages. Messages are sent through a
stream by calls to routines of each queue (write-side or read-side queue) in the stream.
Messages can be generated by a driver, a module, or by the stream head. The messages
are exchanged between modules or drivers in conformance with protocol rules which are
described in the following sections.
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Messages that are passed from the stream head toward the driver are said to travel
downstream (also called write side). Similarly, messages passed in the other direction, from
the driver to the stream head, travel upstream (also called read side).

For more general information about tty subsystem and STREAMS, refer to AIX Version 4.1
General Programming Concepts Volume 1: Writing Programs and AIX Version 4.1
Communications Programming Concepts.

Stream Head
The stream head is the interface between the stream and the user application. The stream
head processes the user’s requests; it is common to all tty devices regardless of the line
discipline or tty driver in use.

The stream head performs the following functions:

• It allocates the stream as the controlling terminal if none is already allocated.

• It handles the process group and the session associated with the controlling terminal.

• It handles the job control.

• It processes the M_PCSIG and M_HANGUP messages coming from the line discipline
and generates the appropriate signals to the appropriate user process. It also handles the
message type M_ERROR from any downstream modules.

• It handles “trusted path” for security purposes. This functionality is shared between the
stream head and the driver.

• It handles the “revoke” function which kills all waiting processes attached to the specified
file descriptor.

The stream head processes various messages. In particular, the M_SETOPTS message is
sent by the line discipline module to alter some characteristics of the stream head. The
SO_ISTTY flag contained in an M_SETOPTS message indicates to the stream head that the
stream is established for a terminal.

The IOCTLs listed here are directly processed by the stream head:

TIOCSPGRP (or TXSPGRP)
Sets the process group identificator for the tty.

TIOCGPGRP (or TXGPGRP)
Gets the process group identificator for the tty.

TIOCGSID Gets the session identificator for the tty.

TXISATTY Answers if this stream is a tty or not.

TCTRUST Sets or resets the trust flag in the stream head.

TCQTRUST Gets the state of the tty (trusted or not).

TCSAK Sets or resets the state for secure attention key (SAK).

TCQSAK Identifies the process of a user asking for the SAK sequence.

TIOCCONS Sets the console redirection active or not.

TCXONC Generates the following message types downstream based on the input
parameter:

Input Parameter Message Type
M_START TCCON
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M_STOP TCCOFF
M_STARTI TCION
M_STOPI TCIOFF

TCFLSH Generates a M_FLUSH message type based on input parameter type
(FLUSHR, FLUSHW).

TIOC Module
The IOCTL system calls from applications that are addressed to modules or drivers can be
processed according to two STREAMS mechanisms:

• The first mechanism allows the processing of ioctls issued using the I_STR call. The
associated structure (strioctl defined in the stropts.h file) contains the IOCTL command
and the number of bytes of data. The I_STR calls are handled by the stream head and
forwarded downstream.

• The second mechanism allows the processing of ioctls other than I_STR. These IOCTLs
are known as transparent IOCTLs. (The transparent mechanism transparently supports
applications developed prior to the introduction of STREAMS.)

If an IOCTL is not processed in the stream head, the stream head creates an M_IOCTL
message which includes the ioctl arguments, and sends this message downstream for
processing by a specific module or driver. M_IOCTL messages containing a transparent
IOCTL have a TRANSPARENT indicator in their associated iocblk structure defined in the
stream.h file. The M_IOCTL messages can be followed by one or more M_DATA blocks.

The tioc module is provided in the tty subsystem to facilitate processing of the transparent
IOCTLs in the lower modules. It has two functions:

1. Identification of the transparent IOCTLs that can be processed on a tty stream:

The tioc module maintains a table containing a list of ioctls commands with the number
of bytes to copy, and a type (see the tioc_reply structure in “Open Routine”). The tioc
module recognizes a predefined list of ioctls. In addition, it asks the lower modules or
drivers for their specific IOCTLs and adds them to its list. This protocol is described in
“Open Routine.”

2. Management of the data transfers from or to the stream head for the transparent ioctls:

Since a module or driver has no user context, it has to request the stream head to
perform data transfers between user and kernel environments. The tioc module is
responsible for the transfer of data from or to the user space. This avoids messages
transfers through all modules. If the ioctl processing requires data to be transferred in
from user space, tioc issues an M_COPYIN message. In the same way, tioc issues an
M_COPYOUT message to transfer out any data back to user space. The tioc module
may also intermix M_COPYIN and M_COPYOUT messages in any order, if both input
and output transfers are required for an ioctl. The protocol used to perform the
M_COPYIN and M_COPYOUT messages is described in “Copy in Data for an IOCTL”
and “Copy out Data for an IOCTL”.

Open Routine
The open routine has to initialize the IOCTL commands table of the tioc module. For that, it
sends downstream an M_CTL message containing the TIOC_REQUEST command.

The M_CTL message has to come downstream to the stream end. Then the drivers or
modules send an M_CTL message upstream containing the TIOC_REPLY command. Each
module on read side adds an M_DATA message to the M_CTL message if required. The
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M_DATA message contains a list of tioc_reply structures which define the specific IOCTLs
to be handled by tioc.

The tioc_reply structure, defined in the str_tty.h file, is the following:

struct tioc_reply { 
        int tioc_cmd;          /* command */ 
        int tioc_size;         /* number of bytes to copy */ 
        int tioc_type;         /* type of ioctl */  
};   
     
/*  
 * STREAM tioc module tioc_type 
 */ 
#define TTYPE_NOCOPY    0    /* don’t need any copies */ 
#define TTYPE_COPYIN    1    /* need a M_COPYIN */  
#define TTYPE_COPYOUT   2    /* need a M_COPYOUT */ 
#define TTYPE_COPYINOUT 3    /* need both M_COPYIN and M_COPYOUT */ 
#define TTYPE_IMMEDIATE 4    /* use immediate value */

The following examples show how IOCTL types are used.

The IOCTLs that do not require data transfer to or from STREAMS (for example,
TIOCSDTR) are declared as TTYPE_NOCOPY.

The IOCTLs that use immediate parameter values (for example, TCXONC) are declared as
TTYPE_IMMEDIATE and are called as follows:

ioctl(fd, TCXONC, TCOON);

The IOCTLs that request information from the STREAMS and require COPYOUT operations
(for example, TIOCGETA) are declared as TTYPE_COPYOUT and are called as follows:

ioctl(fd, TIOCGETA, termios_ptr);

In the preceding sample, termios_ptr is the address of a termios structure to be
obtained from the tty.

The ioctls that send information to the STREAMS and require M_COPYIN  operations (for
example, TIOCSETA) are declared as TTYPE_COPYIN  and are called as follows:

ioctl(fd, TIOCSETA, termios_ptr);

In the preceding sample, termios_ptr is the address of a termios structure to be set in
the tty.

Copy in Data for an IOCTL
When an M_IOCTL message arrives from the stream head, the write-side put routine
recognizes an IOCTL which requires data to be copied in, and it also knows the size of
required data.

So, the write-side put routine immediately sends an M_COPYIN message with this size to
the stream head. The stream head processes a copyin function and sends an M_IOCDATA
message downstream containing the data and the result of the copyin process.

If the copyin was successful, the write-side put routine sends an M_IOCTL message, linked
to an M_DATA message containing the data, downstream. The M_IOCTL message is sent
downstream until a module can process it and send an M_IOCACK up to the stream head.

If the copyin was not successful, the write-side put routine sends an M_IOCNAK message
to the stream head.
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Copy out Data for an IOCTL
When an M_IOCTL message arrives from the stream head, the write-side put routine
recognizes an IOCTL which requires data to be copied out.

The tioc module sends the M_IOCTL message downstream and the IOCTL is processed by
the appropriate module. If the ioctl processing is successful, this module sends an
M_IOCACK upstream containing data to copy out.

The read-side put routine sends an M_COPYOUT message, linked to an M_DATA
message, to the stream head. The stream head processes a copyout function and sends
downstream an M_IOCDATA message containing the result of the copyout process.

The write-side put routine replies to this message by an upstream message, depending on
the success of the copyout. If it was successful, it sends an M_IOCACK message. If not, it
sends an M_IOCNAK message.

LDTERM Module
The ldterm module is a key part of the STREAMS-based tty subsystem. It supplies the line
discipline for terminal devices. This line discipline is POSIX compliant and also supports the
System V and BSD interfaces. The ldterm module provides the terminal interface functions
specified in the termios.h header file. (The termios.h header file is described in
AIX Version 4.1 Files Reference.) The ldterm module also handles EUC and multibyte
characters.

The ldterm module processes various types of STREAMS messages. The messages
processed by this module are listed in Messages Summary. Any other message received by
ldterm is passed downstream or upstream unchanged.

Open Routine
When first called, the open routine allocates space for the ldterm internal structure, and also
sends an M_SETOPTS message upstream. This message includes a stroptions structure
part defined in the stream.h file, which contains options that inform the stream head how to
use this stream.

The open routine allocates space for the termios structure, which contains the flags used to
control the terminal. The flags are defined in the termios.h file.

– c_iflag defines input modes.
– c_oflag defines output modes.
– c_cflag defines hardware control modes.
– c_lflag defines terminal functions handled by ldterm.
– c_cc defines the control characters.

The open routine initializes the flags with default values.

When ldterm is pushed during stream initialization, it sends some M_CTL messages
downstream that query the driver for the current flags (TIOCGETA comand) and the flags
the driver may process (MC_CANONQUERY command). The driver may modify the flags
processed by ldterm with its response to MC_CANONQUERY.

Close Routine
The close routine sends an M_SETOPTS message upstream to undo stream head changes
done on the first open.

The ldterm module also sends M_START and M_STARTI messages downstream to undo
the effect of any previous M_STOP and M_STOPI messages.
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Finally, the close routine frees all the outstanding buffers allocated by the ldterm module.

Read-Side Put Routine
The ldterm read-side put routine processes the following STREAMS messages coming from
downstream modules or driver:

M_FLUSH
This is a request to flush the read-side queue of all its data messages and all data being
accumulated. The read-side put routine processes the request and forwards the message
upstream.

M_BREAK
The M_BREAK message provides the following status information: 
break_interrupt, parity_error, framing_error or overrun.
The read-side put routine reads the status, processes the event and discards the message.

M_DATA
The read-side put routine processes the M_DATA message and performs various actions
according to the characters encountered in the data and the setting of the termios flags:

• The read-side put routine generates echo characters which are sent downstream in
M_DATA messages.

• ldterm can control the output flow of data: if the IXON flag is set, the read-side put routine
processes START (VSTART) and STOP (VSTOP) characters and sends M_START and
M_STOP messages downstream.

• ldterm can control the input flow of data: if the IXOFF flag is set and input is to be
stopped or started, the read-side put routine generates M_STOPI and M_STARTI
messages downstream.

• If the ISIG flag is active, the read-side put routine manages signals characters. It sends
M_PCSIG messages upstream when signal characters are encountered and then
discards these characters.

• At the logical termination of input, the read-side put routine sends the currently buffered
characters upstream to the stream head. The logical termination of input depends on the
state of the ICANON flag:

– If ICANON is set, ldterm is in canonical input mode. In this case, the input logically
terminates at the end of a line of input. The canonical line termination characters are
NEWLINE, EOF, EOL, and EOL2.

– If ICANON is not set, ldterm is in noncanonical or raw input mode. In this case, the
input terminates when at least VMIN bytes are present in the input message buffer or
when the timer specified by VTIME expires.

M_IOCACK
The M_IOCACK message signals a positive acknowledgment of a previous M_IOCTL
message.

• If the M_IOCACK message acknowledges the TIOCGETA, TIOCSETA, TIOCSETAW, or
TIOCSETAF commands, the termios structure is updated as specified in the commands.

• If the M_IOCACK message acknowledges switching the current canonical mode
(–ICANON to ICANON, or ICANON to –ICANON), the read-side put routine sends an
M_SETOPTS message upstream to notify the stream head of the change.
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• If the message acknowledges a TIOCOUTQ command, the required number of bytes are
added to the reply value in the M_IOCACK message.

• In all other cases the message is sent upstream.

M_CTL
The M_CTL messages received on the read-side and processed by ldterm are sent by the
driver for different reasons:

1. The M_CTL message can be sent to communicate changes in the driver’s state:

If the CLOCAL flag of ldterm is not set, and the carrier state has just made a transition
from on to off, the read-side put routine sends an M_HANGUP message upstream to
inform the stream head that the terminal connection was broken.

2. The M_CTL message can be sent to answer to a previous request or command from
ldterm. The following commands contained in an M_CTL message are processed:

TIOCGETA The driver sends this command either as a response to an inquiry for
current settings or to reflect an asynchronous change in the flags of its
termios structure.
The read-side put routine copies the termios structure from the attached
M_DATA message block into its internal termios structure. Then, it frees
the M_CTL message.

MC_NO_CANON
The input canonical processing normally performed on M_DATA messages
is disabled and those messages are passed upstream unmodified; this is
used by modules or drivers that perform their own input processing (For
example a pseudo terminal in TIOCREMOTE mode connected to a program
that performs the input processing).

MC_DO_CANON
All input processing performed on M_DATA messages is enabled.

MC_PART_CANON
The driver sends this message to notify ldterm that it handles some part of
the input processing itself (for example, flow control). An M_DATA message
containing a termios structure is expected to be attached to the original
M_CTL message. The ldterm module will examine the c_iflag,
c_oflag, and c_lflag fields of the termios structure and will process
only those flags which have not been turned ON.

TIOCGETMODEM
The driver sends this message to communicate the state of its flag modem
carrier on. The associated M_DATA message contains a value of 1
(one) to indicate the carrier is on, or a value of 0 (zero) to indicate the
carrier is off. This information is used to update the ldterm module state. If
the CLOCAL flag of ldterm is not set, and the carrier state has just made a
transition from on to off, the read-side put routine sends an M_HANGUP
message upstream to inform the stream head that the terminal connection
was broken.

When the command is processed the M_CTL message is freed.

3. The M_CTL message can be sent to answer to the TIOC_REQUEST coming from the
tioc module with a TIOC_REPLY. (See “TIOC Module” on page 10-4.) This M_CTL
message is forwarded upstream.
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Write-Side Put Routine: Immediate Processing
The ldterm write-side put routine immediately processes the following STREAMS
messages:

M_FLUSH
The write-side put routine flushes the write-side queue and discards any buffered output
data. Then, it forwards the message downstream.

M_DATA
If the write-side queue is empty, the write-side put routine processes the M_DATA message.
Else, it queues the M_DATA message to the write-side queue for later processing by the
write-side service routine.

M_IOCTL
The write-side put routine validates the format of the M_IOCTL message and checks for
known IOCTL command:

• If the message format is invalid, it turns the M_IOCTL message into an M_IOCNAK
message, and returns it upstream.

• If the IOCTL command is not recognized, it forwards the M_IOCTL message downstream
for processing by other modules.

• If the IOCTL is recognized, the write-side put routine determines if the command must be
processed in the proper sequence relative to M_DATA messages. If so, it queues the
M_IOCTL message to the write-side queue for later processing. The commands that
require processing in sequence are:
TIOCSETAW, TIOCSETAF, TCSETAW, TCSETAF, TCSBRK, TCSETXW, TCSETXF, and
TCSBREAK. 
Otherwise, the write-side put routine processes the command immediately.

M_READ
The M_READ message is processed only if the ldterm module is in noncanonical input
mode.

The M_READ message is sent by the stream head to notify downstream modules when an
application has issued a read request and there is not enough data queued at the stream
head to satisfy the request. The message contains the number of characters requested by
the application.

If VTIME is positive, the write-side put routine starts an input timer. When the timer expires,
it sends all buffered input upstream.

M_START, M_STOP, M_STARTI, M_STOPI
Some ioctls commands (TCXONC, TCOOF) are issued by the stream head to block the flow
of data. These blocked data are stored in the modules queues.

The stream head sends an M_IOCTL message with the TCOON command when it wants to
unblock the data. However this message can also be blocked if the waiting data entirely fill
the queues.

To solve this blocking state, the stream head sends the following high priority messages:

• M_START to restart output of data

• M_STOP to stop output of data

• M_STARTI to restart input of data
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• M_STOPI to stop input of data.

The ldterm write-side put routine updates internal state fields and may forward these
messages downstream.

Write-Side Service Routine: Delayed Processing
The write-side service routine processes messages that may be delayed due to STREAMS
flow control or to ioctls requiring sequential processing. The write-side service routine is
called by the scheduler.

M_DATA
The write-service service routine processes the data according to the flags in the termios
structure. It sends the processed characters downstream to the driver when the write-side
queue fills up and all of the data is processed.

M_IOCTL
Some ioctl commands must wait until output drains before they are processed. M_IOCTL
messages containing these commands are queued on the write-side queue so that the write
service routine processes them in the correct sequence relative to preceeding data. The
commands that require processing in sequence are:
TIOCSETAW, TIOCSETAF, TCSETAW, TCSETAF, TCSBRK, TCSETXW, TCSETXF, and
TCSBREAK.

Multibyte Processing
The ldterm module handles the extended UNIX code (EUC) character encoding scheme.
This encoding scheme enables the module to process multibyte characters as well as
single-byte characters. It correctly handles backspacing and tabulation expansion for
multibyte characters.

By default, multibyte processing by ldterm is turned off. When ldterm receives an
EUC_WSET IOCTL call that sets character width on screen to a value greater than one, it
enables multibyte processing.

When multibyte processing is turned on, the ldterm module automatically calls EUC
routines as necessary.

Messages Summary
Messages include read-side messages and write-side messages.

Read-Side Messages
Messages processed by ldterm:

M_BREAK, M_CTL, M_DATA, M_FLUSH, M_HANGUP, M_IOCACK.

Messages sent by ldterm upstream:

M_CTL, M_DATA, M_ERROR, M_FLUSH, M_HANGUP, M_IOCACK, M_IOCNAK,
M_PCSIG, M_SETOPTS.

Write-Side Messages
Messages processed by ldterm:

M_CTL, M_DATA, M_FLUSH, M_IOCTL, M_READ, M_START, M_STARTI, M_STOP,
M_STOPI, M_NOTIFY.

Messages sent by ldterm downstream:
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M_BREAK, M_CTL, M_DATA, M_DELAY, M_FLUSH, M_IOCTL, M_READ, M_STOP,
M_START, M_STOPI, M_STARTI.

SPTR Module
The serial printer module (sptr) supplies a specific line discipline for serial printers. It is
mainly used by the spool subsystem.

The user interface (spool/application) is specified in the lp special file. (The lp special file is
described in AIX Version 4.1 Files Reference.)

The sptr module processes various types of STREAMS messages. The messages
processed by this module are listed in Messages Summary. Any other message received by
sptr is passed downstream or upstream unchanged.

Open Routine
When first called the open routine allocates space for the sptr structure and sends an
M_SETOPTS message upstream to the stream head.

When sptr is pushed on the stream, it sends an M_CTL message to the driver (containing
the TIOCMGET command) to obtain the status and the CTS modem control signal.

Read-Side Put Routine
The read-side put routine processes the following STREAMS messages:

M_FLUSH
The read-side put routine flushes the read-side queue, then forwards the message
upstream. The flushing is dependent on the input parameter (FLUSHR or FLUSHW).

M_DATA
The read-side put routine stores the M_DATA message for next M_READ message.

M_PCPROTO
The driver sends this message containing the LPWRITE_ACK command to indicate to sptr
that all the data it sent in the previous M_PROTO message was transmitted to the line.

M_IOCACK
The M_IOCACK message signals the positive acknowledgment of a previous M_IOCTL
message.

M_CTL
The M_CTL message is sent by the driver to communicate changes in the driver’s state, or
to reply to a previous M_CTL message.

The following commands contained in an M_CTL message are processed:

TIOCMGET The sptr module registers the CTS state in its private data.

TIOC_REPLY The sptr module adds information concerning the specific IOCTL
commands in the message and sends it upstream.

cts_on or cts_off
This message is sent by the driver when the CTS signal changes. sptr uses
it to get information about the printer connection and in turn takes
appropriate actions.
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Write-Side Put Routine
The write-side put routine immediately processes the following STREAMS messages:
(Messages not listed here are simply forwarded downstream.)

M_FLUSH
The write-side put routine flushes the write-side queue and forwards the message
downstream. The flushing is dependent on the input parameter (FLUSHR or FLUSHW).

M_DATA
If the write-side queue is not empty, the write-side put routine queues the message to this
queue for later processing.  The message will be processed by the write-side service routine
when called by the scheduler.

If the write-side queue is empty, the write-side put routine processes the message
immediately: it formats the data if needed, and sends an M_PROTO message with the data
downstream to the driver.

M_IOCTL
The write-side put routine processes the following IOCTL commands:

IOCINFO, LPRGET, LPRSET, LPRMODG, LPRMODS, LPRGTOV, LPRSTOV, LPQUERY,
LPRGETA, LPRSETA, LPWRITE_REQ, TCGETA, TCSETA, TCSETAW, and TCSETAF.

The sptr module will reply to LPWRITE_REQ when it receives the write completion
message (M_PCPROTO message) from the driver or if an error condition arrives (timeout,
disconnection of the printer).

Other IOCTL commands are sent downstream unchanged.

M_READ
This message is sent by the stream head as a data request. The write-side put routine
returns the required number of data previously stored on the read side.

Messages Summary
Messages include read-side messages and write-side messages.

Read-Side Messages
Messages processed by sptr:

M_CTL, M_DATA, M_FLUSH, M_IOCACK, M_PCPROTO.

Message sent by sptr upstream:

M_FLUSH, M_IOCACK, M_IOCNAK, M_SETOPTS.

Write-Side Messages
Message processed by sptr:

M_DATA, M_FLUSH, M_IOCTL, M_READ.

Messages sent by sptr downstream:

M_CTL, M_DATA, M_FLUSH, M_IOCTL, M_PROTO
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SLIP Module
The Serial Line Internet Protocol (slip) line discipline enables the TCP/IP protocol layer to
use the serial lines as network interfaces.

The slip module is used to read internet protocol (IP) packets from a tty port, and to write IP
packets to a tty port for an IP network interface.

The slip module reads raw data character by character from a tty port until it can assemble
an IP packet and forward it for the IP network interface. In the same way, packets written to
a network interface and corresponding to a tty device (slip interface) are written to the tty
port for transmission to a remote system.

SLIP Applications
Two slip applications are provided: the slattach command and the sliplogin command.
Both attach a tty device to a network interface.

Both the slattach and sliplogin commands configure the stream head for a tty in the
following fashion:

The tty port is opened, and set to “raw” mode, with all echoing disabled. Then all active
disciplines are popped from the stream for the tty. The slip line discipline is pushed using
the strload command. For more information on slip configuration, see the /etc/rc.net.serial
shell script.

The stream stack with the slip module is reduced to:

• The stream head

• The slip module

• The driver.

SLIP Routines
The slip module has open and close routines, and put and service routines for the read-side
and the write-side.

The read-side put routine handles M_FLUSH, M_CTL and M_DATA messages sent by the
driver. Unrecognized messages are just passed upstream.

The write-side put routine handles M_FLUSH, M_IOCTL and M_DATA messages sent by
the stream head. Unrecognized messages are just passed downstream.

TTY Drivers
tty drivers directly control the hardware (asynchronous devices) or pseudo-hardware (pty
devices). They perform the actual input and output to the adapter. The tty subsystem
consists of the following drivers:

Name Function

cxma 128-port adapter
lft Low function terminal emulation
lion 64-port adapter
pty Pseudo-terminal
rs Native serial ports, 8-port and 16-port adapters.
sf Native serial ports, in ISA bus hardware.
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This section first explains how to provide a configuration routine for a tty driver. Then the
open, close, write and read processings are described, as well as the open and pacing
disciplines which are managed by the driver.

STREAMS tty device drivers have interrupt entry points at the hardware device interface,
and have direct entry points only for the open, close, and sysconfig system calls. These
entry points are accessed via STREAMS. The stream head translates write and ioctl calls
into messages and sends them downstream to be processed by the driver write put routine.

Drivers Configuration Routine
In order to support dynamic loading, unloading, configuring, and unconfiguring, each tty
driver must provide a configuration routine. This routine is called each time the tty driver is
referenced in a load or unload operation.

Unlike an AIX non-STREAMS-based character device driver, the configuration entry point of
a tty driver has does not add an entry to the device switch table. It simply declares itself to
STREAMS by calling the str_install utility as shown in following example. The str_install
utility performs the internal operations necessary to add or remove the tty driver from the
STREAMS internal tables.

Example
The following example is a minimal configuration routine for a tty driver called ttyd. Device
specific configuration and initialization logic can be added as necessary. The ttyd_config
entry point defines and initializes the strconf_t structure required by the str_install utility. In
this example the ttyd_config operation retrieves the argument passed through the pointer
specified by the uiop parameter. The major number is required for tty drivers and is
retrieved from the dev parameter.

/* ttyd driver example:
/* BEGINNING. */

#include <sys/device.h> /* for the CFG_* constants */
#include <strconf.h> /* for the STR_* constants */

static struct module_info ttydm_info = {
DRIVER_ID,“ttyd”,0,INFPSZ,512,256

};

static struct qinit ttyd_rinit = {
NULL,ttydrsrv,ttydopen,ttydclose,NULL,&ttydm_info,NULL

};

static struct qinit ttyd_winit = {
ttydwput,ttydwsrv,NULL,NULL,NULL,&ttydm_info,NULL

};

static struct streamtab ttydinfo = {
&ttyd_rinit,&ttyd_winit,NULL,NULL 

};

ttyd_config(dev, cmd, uiop) 
dev_t dev; 
int cmd; 
struct uio *uiop;

{
struct ttyd_dds tmp_dds;
static strconf_t ttyd_conf = {

“ttyd”, &ttydinfo, STR_NEW_OPEN, –1
 };
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if (uimove(&tmp_dds,sizeof(struct ttyd_dds),UIO_WRITE, uiop))
return EFAULT;

ttyd_conf.sc_major = major(dev); 
ttyd_conf.sc_sqlevel = SQLVL_QUEUEPAIR; /* for example */

switch (cmd) { 
case CFG_INIT:return str_install(STR_LOAD_DEV, &ttyd_conf);
case CFG_TERM: return str_install(STR_UNLOAD_DEV, &ttyd_conf);
default: return EINVAL;
 }

}

/*ttyd driver example: 
/* END.*/

In this example, all the ttyd driver entry points are declared in the qinit structures that will
be handled by STREAMS. These entry points are:

On the read-side:

– an open routine
– a close routine
– a service routine.

On the write-side:

– a put routine
– a service routine.

All these entry points are standard STREAMS interface entry points.
The only direct entry point to the driver is ttyd_config.

Open Disciplines
Open disciplines specify the protocol to establish a connection

Open disciplines are defined at configuration time. They can be dtropen (default value) or
wtopen.

Pacing Disciplines
Pacing disciplines (or flow disciplines) control the flow of input and output data. The flow
control can be software or hardware, depending on driver and adapter capabilities. The
default modes are xon for a terminal and dtr for a printer.

Software Flow Control
In this case, special characters (START and STOP) indicate when the flow of data has to be
stopped or resumed. IXON, IXOFF and IXANY flags of termios structure enable start and
stop output or input control.

Hardware Flow Control
In this case, the flow of data is suspended or resumed by toggling an EIA modem control
signal. The hardware flow control modes are: dtr, rts.

Open and Close Routines
The open routine is called whenever a device is opened. The open routine uses the open
discipline specified at configuration time, and pins the private data structure.

The close routine unpins the private data structure.
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During open and close, the driver is in user context such that it is able to issue sleeps and
allocate dynamic memory.

The open and close routines are normally serialized by the STREAMS. Only one close can
be active at a time per major/minor device pair. In some cases, the open routine can also
sleep waiting for the specified conditions, such as modem status, to be met.

Write-Side Put Routine
The write-side put routine processes the following received messages:

M_BREAK, M_CTL, M_DATA, M_DELAY, M_FLUSH, M_IOCTL, M_PROTO, M_START,
M_STARTI, M_STOP, M_STOPI.

Because the tty driver is the lowest module on the STREAMS stack, all other messages
have to be freed by the driver.

M_DATA
Data are to be sent to ouput.

M_DELAY
Data output is suspended for a delay passed as a parameter.

M_IOCTL
The M_IOCTL message contains the IOCTL command to be processed by the driver. When
the processing ends, the driver sends an M_IOCACK or M_IOCNAK message upstream,
depending on the result of the IOCTL processing. For those IOCTLs which are not to be
processed by the driver, the driver sends an M_IOCNAK message upstream. However
some IOCTL commands are ignored by the driver and cause only an acknowledgement of
the command.

M_FLUSH
If the request is done for the write side, the driver directly flushes its write-side queue. If the
request is for the read side, the driver immediately sends the same message upstream and
finally flushes its read-side queue.

M_CTL
The M_CTL message is generally sent by ldterm, sptr or tioc modules on their open
processing to obtain information from the driver. It must be processed immediately. The
message contains one of the following commands:

MC_CANONQUERY, TIOCGETA, TIOCGETMODEM, TIOC_REQUEST, TIOCMGET,
TXTTYNAME.

If these commands need to be processed by the driver, the driver sends upstream the same
message containing the requested information in the data part of the message.

If these commands do not need to be processed by the driver, then the driver just frees the
message.

In reply to the TIOC_REQUEST command the driver sends the M_CTL message upstream
replacing TIOC_REQUEST by TIOC_REPLY, and adding the list of its specific ioctl
commands, if any.

In reply to the MC_CANONQUERY command, the driver answers MC_CANON_PART if
needed.

TXTTYNAME is used to initialize the line discipline module name.
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TIOCGETA is used to initialize the line discipline with the default termios settings.

M_STOP, M_START
These requests stop and restart output.

M_STOPI, M_STARTI
These requests stop and restart input.

M_BREAK
This message is sent by the line discipline to the driver to request the transmission of a
BREAK on the device if it supports the break condition.

If the integer pointed by the b_rptr part of this message is 1, then the driver sets the break
condition; otherwise the driver clears the break condition.

M_PROTO
This message is sent by the sptr module and contains the LPWRITE_REQ command. The
M_DATA message associated with the M_PROTO message contains data to transmit to the
line. The driver must acknowledge this message with a M_PCPROTO message with
parameter LPWRITE_ACK when it has transmitted all the data to the line.

Read-Side Processing
The driver has no read-side put routine because it is the last module on the stream.
However the driver has a read-side service routine which is scheduled by STREAMS.

The following messages are sent upstream by the driver:

M_BREAK, M_CTL, M_DATA, M_PCPROTO, M_PCSIG.

M_DATA
When the driver is ready to send data or other information to the user process, it does not
wake up the process. It stores the received characters in M_DATA messages which are
queued. These messages are sent later by the read-side service routine to the stream
corresponding to the driver line.

M_BREAK
The driver sends this message upstream to provide the line discipline with the following
status information:
break_interrupt, parity_error, framing_error or overrun.

M_CTL
The driver sends this message upstream either to communicate changes in the modem
status (a transition of the carrier state from on to off for example), or to answer to a
previous request (TIOCGETA from module ldterm, for example).

M_PCSIG
If the SAK recognition is set, the driver sends this message to signal the reception of the
SAK sequence.

M_PCPROTO
The driver sends this message containing the LPWRITE_ACK command to indicate to sptr
that all the data it sent in the previous M_PROTO message was transmitted to the line.
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Interface with the TIOC Module
On opening, the tioc module sends an M_CTL message downstream containing the
TIOC_REQUEST command. Then the tioc module waits for an M_CTL message with a
TIOC_REPLY command containing the downstream modules or driver specific ioctls. The
tioc module will update its ioctls table according to these specific ioctls. (See “TIOC Module”
on page 10-4.)

Example
The rs driver has two transparent IOCTLs (RS_SETA and RS_GETA) which require data
transfers from and into user space. The tioc module will perform these transfers on behalf of
the rs driver. For that, rs defines two tioc_reply structures that will be sent to tioc module at
its open time in reply to a TIOC_REQUEST included in an M_CTL message.

/* tioc_reply structures array. */

static struct tioc_reply
srs_tioc_reply[] = {
        { RS_SETA, sizeof(struct rs_info), TTYPE_COPYIN },
        { RS_GETA, sizeof(struct rs_info), TTYPE_COPYOUT },
};

In the write put routine of the rs driver, if the message to process is an M_CTL containing a
TIOC_REQUEST command, the following code is executed:

/* mp is the M_CTL to process,
   iocp is mp–>b_rptr: pointer to an iocblk struct describing M_CTL
   mp1 will contain the 2 tioc_reply structures.
   q is the driver’s write-side queue.      
*/

case TIOC_REQUEST:

int reply_size = 2 * sizeof(struct tioc_reply);
iocp–>ioc_cmd = TIOC_REPLY;
if (!(mp1 = allocb(reply_size, BPRI_MED)))

break; /* just reply with the same message, next RS_SETA and
RS_GETA will arrive transparent and will fail */

iocp–>ioc_count = reply_size;
bcopy(srs_tioc_reply, mp1–>b_rptr, reply_size);
mp1–>b_wptr = mp1–>b_rptr + reply_size;
mp–>b_cont = mp1;
qreply(q,mp); /* send the M_CTL upstream */
break;
}

The M_CTL message containing the TIOC_REPLY command is sent upstream and other
modules will add M_DATA messages to M_CTL if necessary.

Interface with the LDTERM Module
The driver answers to the following ldterm commands which are included in M_CTL
messages:

TIOCGETA The ldterm module asks for current termios structure settings.

TIOCGETMODEM
The ldterm module asks for the modem carrier state.

MC_CANONQUERY
The ldterm module negotiates which termios structure flags are handled
by the driver.
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Another specific interface between the tty driver and the line discipline module (ldterm, sptr)
module is the possibility for the driver to send special information:

• A modem status change

• A break interrupt

• A parity error

• A framing error.

When the driver detects a modem status change, it sends upstream an M_CTL message
with a status pointed by the b_rptr part of the message. This status can be:

cts_on, cts_off, dsr_on, dsr_off, ri_on, ri_off, cd_on, cd_off.

When the driver detects an error, it sends an M_BREAK message upstream with a status
pointed by the b_rptr part of the message. This status can be one of the values:

break_interrupt, framing_error, parity_error, overran.

Interface with the SPTR Module
When the driver has sent on the line all the data associated with an M_PROTO message
(with the LPWRITE_ACK command), it sends sptr an M_PCPROTO message (with the
LPWRITE_REQ command) in reply.

The TTY Subsystem in a Multiprocessor Environment
Note: Information supplied in this section requires knowledge of the STREAMS

synchronization, and of the device drivers in a multiprocessor environment. See
Related Information on page 10-28.

On a multiprocessor system, a program can run on any processor and can migrate between
processors. A program which consists of multiple threads can run on several processors at
the same time. This creates a problem of concurrent access to global data.

However, the STREAMS-based tty subsystem takes advantage of the synchronization
provided by STREAMS. Most of tty STREAMS modules and drivers are configured with the
queue pair level synchronization (SQLVL_QUEUEPAIR). This ensures the serialization of
operations done on read and write sides, without explicit locking by the module.

In the tty subsystem, the problem of maintaining data consistency in a multiprocessor
environment is different in the driver and in the other stream modules.

TTY Modules Other Than Driver
If the module doesn’t have global data shared by all the modules instances, the queue pair
level synchronization (SQLVL_QUEUEPAIR) is enough to ensure the module is
multiprocessor-safe. Nevertheless, the queue level synchronization (SQLVL_QUEUE) can
be used for better throughput if there is no shared data between the read and write sides of
the module, or if the put and service routines of the module guarantee the consistency of
accesses to such data. The kernel provides a set of locking services and atomic primitives
for that purpose.

If the module has global data, it must be protected with locks, such as simple locks. Use the
disable_lock and unlock_enable kernel services to safely protect data on a multiprocessor
system.
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Drivers
There are three basic types of critical sections for drivers:

• thread-thread: critical sections shared between threads

• thread-interrupt: critical sections shared between threads and interrupts handlers

• interrupt-interrupt: critical sections shared between interrupt handlers.

STREAMS resolves the first critical section problem, except for concurrent multiple opens.
The serialization of open and close, and the synchronization between the last close and first
open is performed by STREAMS, and no specific lock is needed in the driver.

The other critical sections must be managed by the driver.

Depending on the STREAMS synchronization level selected, the STREAMS will also ensure
the serialization of the put and service routines for the driver.

For the rs driver for example, only one interrupt per adapter can be handled at a time. But
off-level routines which may be called for the same port on different processors, need to be
serialized. To do so, the driver uses simple locks and interrupt priority masking.

Drivers which are not multiprocessor-safe can rely on the possibility of funnelling provided
by the kernel and STREAMS.

Special Cases
These include callback functions and driver configuration routines.

Callback Functions
There are callback functions (for the timeout or bufcall utilities) that need to be protected
against interrupts. This protection can be ensured by STREAMS. In this case the flag
STR_QSAFETY will be specified in the str_install utility. It is also possible to use locks to
protect the callback functions.

Driver Configuration Routine
The minimal configuration routine of the driver is not called by STREAMS. Consequently it is
not protected by STREAMS and must ensure its protection as a non-STREAMS driver does.

An example of a driver configuration routine is provided on page 10-14.
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IOCTL Support and Origin
The following table indicates for each IOCTL:

– Its origin: AIX, AT&T, BSD or SVID (AIX means that the IOCTL is specific to AIX
system).

– In which part of the stream tty subsystem (stream head, ldterm, sptr, nls, or driver)
the IOCTL is processed. An asterisk (*) in a column indicates where the ioctl is
processed.

The last column (comment) gives an additional information for some IOCTLs:

– “STREAMS” indicates that the ioctl is processed by the STREAMS framework.
– “TIOCGETA”, “TIOCSETA”, “TIOCSETAF” and “TIOCSETAW” indicate the internal

names of the TCGETS, TCSETS, TCSETSF and TCSETSW ioctls respectively.
– “rs”, “sf”, “lion”,  and “cxma” indicate that the IOCTL can only be used by the specified

driver.
– “pty” indicates that the IOCTL can only be used by a pseudo-terminal driver.

IOCTL origin stream
head

ldterm sptr nls driver comment

CXMA_GETA AIX * cxma

CXMA_SETA AIX * cxma

CXMA_SETAW AIX * cxma

CXMA_SETAF AIX * cxma

CXMA_KME AIX * cxma

CXMA_GETFLOW AIX * cxma

CXMA_SETFLOW AIX * cxma

CXMA_GETAFLOW AIX * cxma

CXMA_SETAFLOW AIX * cxma

CXMA_RESET AIX * cxma

EUC_WGET AT&T *

EUC_WSET AT&T *

FIOASYNC BSD * STREAMS

FIONREAD BSD * STREAMS

LI_GETVT AIX * lion

LI_SETVT AIX * lion

LI_GETXP AIX * lion

LI_SETXP AIX * lion

LI_SLPI AIX * lion

LI_DSLP AIX * lion

LI_SLPO AIX * lion

LI_PRES AIX * lion, cxma

LI_DRAM AIX * lion, cxma

LI_GETTBC AIX * lion
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IOCTL commentdrivernlssptrldtermstream
head

origin

LI_SETTBC AIX * lion

LPRGET AIX *

LPRSET AIX *

LPRMODG AIX *

LPRMODS AIX *

LPRGOTV AIX *

LPRSTOV AIX *

LPQUERY AIX *

LPRGETA AIX *

LPRSETA AIX *

LPWRITE_REQ AIX *

RS_GETA AIX * rs, sf

RS_SETA AIX * rs, sf

TCFLSH SVID *

TCGETA SVID * *

TCGETS SVID * * TIOCGETA

TCGETX SVID * *

TCGMAP AIX *

TCKEP AIX * STREAMS

TCLOOP AIX *

TCQSAK AIX *

TCQTRUST AIX *

TCSAK AIX *

TCSBRK SVID *

TCSBREAK AIX *

TCSETA SVID * * *

TCSETAF SVID * * *

TCSETAW SVID * * *

TCSETS SVID * * TIOCSETA

TCSETSF SVID * * TIOCSETAF

TCSETSW SVID * * TIOCSETAW

TCSETX SVID * *

TCSETXF SVID * *

TCSETXW SVID * *

TCSMAP AIX *

TCTRUST AIX *

TCXONC SVID *

TIOCCBRK BSD *
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IOCTL commentdrivernlssptrldtermstream
head

origin

TIOCCDTR BSD *

TIOCCONS AIX *

TIOCEXCL BSD * pty

TIOCFLUSH BSD *

TIOCGETC BSD *

TIOCGETD BSD *

TIOCGETP BSD *

TIOCGLTC BSD *

TIOCGPGRP SVID *

TIOCGSID SVID *

TIOCGWINSZ BSD *

TIOCHPCL BSD *

TIOCNXCL BSD * pty

TIOCLBIC BSD *

TIOCLBIS BSD *

TIOCLGET BSD *

TIOCLSET BSD *

TIOCMBIC SVID *

TIOCMBIS SVID *

TIOCMGET SVID * *

TIOCMSET SVID * *

TIOCOUTQ BSD * *

TIOCPKT BSD * pty

TIOCREMOTE AT&T * pty

TIOCSBRK BSD *

TIOCSDTR BSD *

TIOCSETC BSD *

TIOCSETD BSD *

TIOCSETN BSD *

TIOCSETP BSD *

TIOCSLTC BSD *

TIOCSPGRP SVID *

TIOCSTART BSD *

TIOCSTI BSD *

TIOCSTOP BSD *

TIOCSWINSZ BSD * * pty

TIOCUCNTL BSD * pty

TXGPGRP AIX *



10-24 AIX Version 4.1 Writing a Device Driver

IOCTL commentdrivernlssptrldtermstream
head

origin

TXISATTY AIX *

TXSETIHOG AIX *

TXSETOHOG AIX *

TXSPGRP AIX *

TXTTYNAME AIX *

TTY Data Structures
The following is an extract from the usr/include/sys/str_tty.h file. This file defines all the
constants, functions, structures and types of messages that are used by the tty modules and
drivers for the exchange of messages. Additional comments explain how some of the
structures are used.

#ifndef _H_STR_TTY
#define _H_STR_TTY

#include <sys/termio.h>
#include <sys/stream.h>
#ifdef _KERNEL
#include <sys/errno.h>
#include <sys/ioctl.h> /* for TTNAMEMAX definition */
#include <termios.h>
#include <sys/trchkid.h>
#include <sys/atomic_op.h>

/* Macro definition for atomic operation on sysinfo fields. */
#define sysinfo_add(x,y) fetch_and_add(&(x), (y))

TIOC Module
/* Commands of the M_CTL message at open */

#define TIOC_REQUEST _IO(’J’, 0x91) /* request for ioctls */
#define TIOC_REPLY _IO(’J’, 0x92) /* reply for ioctls */

/* Data structures for TIOC_REPLY */

struct tioc_reply {
int tioc_cmd; /* ioctl command */
int tioc_size; /* number of bytes to copy */
int tioc_type; /* type of ioctl */

};

/* Values for tioc_type */

tioc_type indicates if the IOCTL requires data to be copied into or from user space.

#define TTYPE_NOCOPY 0 /* don’t need any copy */
#define TTYPE_COPYIN 1 /* need an M_COPYIN */
#define TTYPE_COPYOUT 2 /* need an M_COPYOUT */
#define TTYPE_COPYINOUT 3 /* need both M_COPYIN and M_COPYOUT */
#define TTYPE_IMMEDIATE 4 /* use immediate value */
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TTY Commands Associated with M_CTL Messages
#define TIOCGETMODEM _IO(’J’, 0xa0) /* get the modem state from driver */
#define MC_CANONQUERY _IO(’J’, 0xa1) /* query the termios state */
#define MC_NO_CANON _IO(’J’, 0xa2) /* set pty’s remote mode */
#define MC_DO_CANON _IO(’J’, 0xa3) /* reset pty’s remote mode */
#define MC_PART_CANON _IO(’J’, 0xa4) /* oflag,iflag and lflag of termios*/

/* are handled by driver or ldterm */

M_PCPROTO Commands
#define LPWR (’l’<<8)
#define LPWRITE_ACK (LPWR|31) /* command in M_PCPROTO message */

typedef int OSR_STATUS;

Status Information
enum status gives general status definitions for drivers and line discipline in the case of
parity and framing error or break_interrupt from the adapter, or in the case of modem status
changes. The status information is sent by the driver in an M_BREAK message.

enum status {
good_char, overrun, parity_error, framing_error, break_interrupt, 
cts_on, cts_off, dsr_on, dsr_off, ri_on, ri_off, cd_on, cd_off };

The possible values for the status enumeration are:

good_char A valid character was received.

overrun Characters were not removed from the hardware in a timely fashion and
some data was lost by the hardware.

parity_error Character was received with improper parity. The character is passed as
received by the hardware.

framing_error Character was received with a framing error. This usually indicates the
number of bits per character is set incorrectly or the baud rate is not set
correctly. The character is passed as received by the hardware.

break_interrupt
The hardware detected a break condition. The break condition is different
for various adapters and physical link layers. For asynchronous
communications, the break condition is usually defined as a spacing
condition on the line for more than one total character time.

cts_on The clear to send signal, cts, made a low to high transition.

cts_off The clear to send signal made a high to low transition.

dsr_on The data set ready signal, dsr, made a low to high transition.

dsr_off The data set ready signal made a high to low transition.

ri_on The ring indicate signal, ri, made a low to high transition.

ri_off The ring indicate signal has made a high to low transition.

cd_on The data carrier detect signal, cd, made a low to high transition.

cd_off The data carrier detect signal made a high to low transition.

TTY Trace Support
The main tty hook IDs are defined in the sys/trchkid.h common header file. The tty
subhooks are defined below. The tty hooks and subhooks are used in the Return and Enter
macros defined below.
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/* TTY subhooks identificators */

#define TTY_CONFIG 0x01
#define TTY_OPEN 0x02
#define TTY_CLOSE 0x03
#define TTY_WPUT 0x04
#define TTY_RPUT 0x05
#define TTY_WSRV 0x06
#define TTY_RSRV 0x07
#define TTY_REVOKE 0x08 /* for stream head */
#define TTY_IOCTL 0x09 /* for ioctls */
#define TTY_PROC 0x0a /* for drivers */
#define TTY_SERVICE 0x0b /* for drivers */
#define TTY_SLIH 0x0c /* for drivers */
#define TTY_OFFL 0x0d /* for drivers */
#define TTY_LAST 0x0e /* can be used for any specific entry*/

The parameters for the Return and Enter macros are:

w TTY hookid | TTY subhookid
dev dev(type dev_t)
ptr address of the private data (q–>q_ptr) of each module or driver
a, b, c specific parameters for each subhook
retval return value

The parameters for each subhook are:

TTY_CONFIG a=command, no dev, no ptr.
TTY_OPEN a=oflag, b=sflag
TTY_CLOSE a=flag
TTY_WPUT a=@msg, b=message type
TTY_RPUT as TTY_WPUT
TTY_WSRV a=q_count
TTY_RSRV as TTY_WSRV
TTY_REVOKE a=flag
TTY_IOCTL a=ioctl command
TTY_PROC a=cmd, b=arg
TTY_SERVICE a=service command, b=arg
TTY_SLIH no dev, ptr=@struct intr, a=adapter type
TTY_OFFL ptr=@struct intr

Enter and Return Macros
The Enter and Return macros use the tty hooks and subhooks.

#define Enter(w, dev, ptr, a, b, c) \
dev_t DEV; \
int PTR; \
int Flag = 0; \
int W; \
if (TRC_ISON(0)) { \

DEV = (dev); \
PTR = (ptr); \
Flag = 1; \
W = w; \
TRCHKGT(W, DEV, PTR, a, b, c); \

}
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#define Return(retval) { \
int RET = (retval); \
int Line = __LINE__; \
if (Flag) \

TRCHKGT(((W)|0x80), DEV, PTR, RET, Line, 0);\
return(RET); \

}

#define Returnv(retval) { \
int Line = __LINE__; \
if (Flag) \

TRCHKGT(((W)|0x80), DEV, PTR, 0, Line, 0);\
}

#define Data(xxx, a, b, c) \
(Flag ? TRCHKGT(((W)|0x40), DEV, PTR, a, b, c) : 0)

TTY IOCTL Internal Names
The following definitions indicate the internal names of some IOCTLs.

/* tty ioctls commands internal names */

#define TIOCGETA TCGETS
#define TIOCSETA TCSETS
#define TIOCSETAW TSETSW
#define TIOCSETAF TCSETSF

STREAMS TTY Modules and Drivers DDS
/* Maximum device name length */

#define DEV_NAME_LN 16

/* DDS types used at configuration time */

enum dds_type { /* Which DDS type */
LC_SJIS_DDS, /* sjis lower converter module*/
LDTERM_DDS, /* ldterm module */
LION_ADAP_DDS, /* 64-port driver (for adapter) */
LION_LINE_DDS, /* 64-port driver (for lines) */
NLS_DDS, /* nls module */
PTY_DDS, /* pty module */
RS_ADAP_DDS, /* Native 8 and 16-port driver (for adapters) */
RS_LINE_DDS, /* Native 8 and 16-port driver (for lines) */
SPTR_DDS, /* sptr module */
TIOC_DDS, /* tioc module */
UC_SJIS_DDS /* sjis upper converter module */
CXMA_ADAP_DDS /* 128-port driver (for adapter) */
CXMA_LINE_DDS /* 128-port driver (for lines) */

  };
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STREAMS TTY Modules and Drivers Names
enum module_names {

tioc, /* transparent ioctl modulename */
ldterm, /* line discipline module name */
pty, /* pseudo tty driver module name */
uc_sjis, /* upper converter sjis module name */
lc_sjis, /* lower converter sjis module name */
nls, /* mapping discipline module name */
sptr, /* serial line printer discipline name */
rs, /* rs driver name */
lion, /* lion driver name */
cxma /* 128 port driver name */

 };

#endif /* _H_STR_TTY */

Related Information
Discussion of Multiprocessing (MP) Serialization in Serialization Services, on page 5-8, and
MP-Safe Coding Example, on page 5-10.

The TTY Subsystem in AIX Version 4.1 General Programming Concepts Volume 1: Writing
Programs.

STREAMS in AIX Version 4.1 Communications Programming Concepts.

Understanding Multiprocessor-Safe Device Drivers in AIX Version 4.1 Kernel Extensions
and Device Support Programming Concepts.

UNIX System V Release 4, Programmer’s Guide: STREAMS. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1990.
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Chapter 11. Implementing Graphical Input and 2D
Graphics Device Drivers

This chapter provides technical guidance for developers who want to add functionality into
the XServer on AIXwindows. This additional functionality may include graphics adapters,
input devices and dynamically loaded extensions.

This chapter has several sections:

• “Porting to the AIXwindows X Server: Overview,” on page 11-1, provides a description of
the basics of porting to the AIXwindows X Server.

• “Porting 2D Graphics Adapters,” on page 11-2, outlines the general procedure to
develop a graphics adapter device driver and the loadable DDX interface used by the X
Server.

• “Porting Input Devices,” on page 11-48, describes how to add a new input device to the
AIXwindows X Server via the X11 Input Extension.

• “Building a Dynamically Loadable Module,” on page 11-62, is a brief description of how to
develop a generic X extension load module.

The information provided in this chapter does not attempt to educate readers about the X
Window System or X programming. Rather, it describes the tasks required to implement the
above-mentioned functionality in the AIX system. For general information about the X
Window System programming see the list of related information at the end of this chapter.  

Porting to the AIXwindows X Server: Overview
You can add functionality to the AIXwindows X server through the creation of dynamically
loadable modules. Each load module must provide the following basic functionality:

• An entry point definition

• A set of routines to initialize the appropriate data structure provided by the X server

• X Consortium and vendor-written implementation-specific routines

The load modules can interact with the X Window System in a variety of ways. The
AIXwindows X server currently supports the following functionality:

• Porting the X server to run on a different 2D graphics adapter

• Writing load modules to the standard X11 Input Extension

• Creating your own dynamically loadable X Window System extension

The load modules for 2D graphics adapters and extension input devices require that entries
be defined and configured in the AIX Object Data Manager (ODM) databases.This allows
the X server to determine where the load modules for the specific devices reside.
Information about 2D graphics adapters is stored in the ODM Graphics Adapter Interface
(GAI) database, and information about extension input devices is stored in the ODM
XINPUT database.

Current database entries can be examined by setting the environment variable
ODMDIR=/usr/lib/objrepos and running the command odmget GAI or odmget XINPUT.
These entries will be explained in greater detail in the respective sections of this chapter.
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The dynamically loaded extensions are normally loaded via a per-user basis. If the X server
is started with a –x ext_name flag, then the X server will look in the file
/usr/lpp/X11/bin/dynamic_ext for the load module that corresponds to ext_name. There
are also static extensions, which can be found in /usr/lpp/X11/bin/static_ext, but they are
always loaded into the X server, and are thus not recommended.

The information provided here assumes an ability on the part of the developer to program
generic actions without further instruction. Refer to the following sections to learn more
about extension-specific tasks:

• Porting 2D Graphics Adapters (on page 11-2)

• Porting Input Devices (on page 11-48)

The subroutines used in these extensions are summarized in “List of X Server Porting
Subroutines” on page 11-64.

Porting 2D Graphics Adapters
This section describes the method for porting 2D graphics adapters into the X server on the
AIXwindows. The information is divided as follows:

• Graphics Architecture Overview
– Graphics Adapter Interface (GAI) Display Subsystem
– X Server

• Low-Level Display Driver
– Display Device Driver
– Display Device Driver Subroutines
– LFT Interface Routines
– Display Driver Structure Descriptions

• Device Dependent Driver (DDX)
– GAI 2D Adapter Load Modules
– X Server Initialization Routines
– Device Dependent Initailization Subroutines
– Adapter Access and the aixgsc System Call
– Minimum RMS for 2D Adapters
– Configuring the 2D Adapter into the ODM Database
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Graphics Adapter Interface (GAI) Display Subsystem
The Architecture of the Display Subsystem figure illustrates the display subsystem
architecture.
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Architecture of the Display Subsystem

The display subsystem is the set of software entities that provides all display related input
and output to applications and to the AIX Version 4.1 kernel. Its capabilities range from
simple 2D graphics to support for 3D models which enable lighting and shading.

A Graphics Adapter Interface (GAI) defines an interface between the user application
programming interface (API) and the device-specific code.
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The principal components of the architecture include:

• X Server

• graPHIGS Nucleus

• Kernel Enhancements

• GAI Load Modules

The shaded objects in the architecture figure show input and graphics hardware devices
and user applications. These are not components of the display subsystem.

The components of the display subsystem receive their external inputs from X clients and
from other kernel subsystems. User inputs are processed by the kernel and routed through
the X server, which sends them appropriately to X clients.

Applications use programming interfaces made available through the various libraries of the
display subsystem. Each programming interface, (API), defines a graphical model. These
graphical models evolve in many forums, including the American National Standards
Institute, the International Standards Organization, the X Consortium, the GL Architecture
Review Board (ARB), and various highly successful industry de-facto standards.

The graphical models supported by the display subsystem are listed below:

• graPHIGS

• X Window System

• Display PostScript

• Graphics Library of Silicon Graphics, Inc. (GL)

• OpenGL Version 1.0

• PEX 5.1

Display Subsystem Definitions
The display subsystem is the set of software units that provides all display-related input and
output to applications and to the AIX Version 4.1 kernel.

List of Component Types
The types of components are defined below:

Component Type Definition

Adapter With reference to input devices, an adapter specifies the device driver
used to process user events from one of the input devices. This could
be the keyboard/sound, mouse, tablet, dials, or lighted programmable
function keys.

Application Specifies a program that uses the display subsystem. The use of this
term with respect to the display subsystem is analogous to the
standard definition of application.

Client Specifies an application that uses the services of X Window System.
In the terminology of the display subsystem, however, this concept
has been extended. A client is an application that uses a server.
These clients are typically different processes and may reside on
different platforms.

Display Device Driver

Specifies the set of subroutines that control read or write access to a
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display adapter. The display drivers provide a common programming
interface to other components in the display subsystem, and account
for the particular function and implementation within the specific
device. Thus, each display driver contains code unique for that device.
A set of subroutines is not considered a display driver unless it:

• Contains software that is applicable only to the function or control of
a particular device.

OR

• Issues I/O level commands to specifically manipulate the device
hardware.

• Manages the graphics context and graphics resources on behalf of
servers.

Library Specifies a programming interface consisting of a functionally related
set of subroutines that are typically grouped as one module and that
provide the formal application programming interface into a collection
of software.

Nucleus Specifies a server. The term nucleus is used principally to distinguish
an instance of a server process from the X server. The principal user
of nucleus is the graPHIGS API, via the graPHIGS nucleus.

Server Specifies the component of X Window System that receives requests
from the Xlib library and that returns events to the Xlib library. This
concept has been modified and extended in the display subsystem. A
server can also mean a process executing in a platform in which
rendering occurs and that is directly attached to the display adapter.
This server accepts X protocol requests and returns X protocol
events, and as such is the X server. However, other graphical models
use the server to obtain screen resources such as window geometries
or colormaps, so the X server definition is now extended to become
the resource server.

Toolkit Specifies a library of calls that allows applications to manipulate data
presentation using a different level of abstraction than that offered by
an underlying library. The display subsystem expansion of this
concept of a toolkit is the concept that it in turn calls upon another
library. The toolkit often takes its name from the underlying library.
Frequently, toolkits are written to be window system independent.

List of Component Names
The following list introduces the components and provides an description of the function of
each. Where appropriate, the general category of component is described rather than each
instance. Some of the components listed (such as DPS, GL and graPHIGS) are packaged
into separate LPPs and must be ordered as such.

Component Description

DPS Specifies Display PostScript, a program product from Adobe Systems, Inc.
This program implements the language PostScript and its extensions, as
applicable, on a display system instead of on printers. DPS uses 2D
graphical functions and complex character fonts, and operates as an
extension of the X server.

GAI Specifies the Graphics Adapter Interface, including the interface to and the
set of libraries that form the interface for graphical output to the display
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adapters. The GAI libraries implement 2D and 3D graphics functions as
well as permit direct access to the hardware. GAI components include:

• GAI Resource Management Support

• GAI 2D Drawing Library

• GAI 3D Model 1 Drawing Library

• GAI 3D Model 2 Drawing Library

• GAI 3D Model 5 Drawing Library

GL Specifies Graphics Library. This it the library of graphical functions defined
and implemented by Silicon Graphics, Incorporated, under the product
name GL. This library is a set of 3D functions, based on a graphical model
differing from the PHIGS graphical model. GL is the second graphical
model used for 3D. Thus, it is often referred to as the 3D-M2 or the GAI 3D
Model 2 Drawing Library.

graPHIGS Specifies the graPHIGS application programming interface (API), which is
IBM’s implementation of PHIGS. This program includes extensions to and
deviations from the PHIGS standard. The term PHIGS is a reference to the
graPHIGS API, unless explicitly stated to the contrary.

The graPHIGS API is the first 3D graphical model. It is referred to as
3D-M1 or the GAI 3D Model 1 Drawing Library.

OpenGL Specifies OpenGL, a network transparent API for developing applications
using 3D graphics. OpenGL is derived from the proprietary SGI GL API.

PEX Specifies the 3D Extension to X. The core X protocol provides for basic 2D
graphics functionality. The PEX extension adds 3D graphics at about the
same functional level as PHIGS and PHIGS PLUS, including features such
as lighting, shading, server-side stored structures, and advanced primitives.

PHIGS Specifies Programmer’s Hierarchical Interactive Graphics System, an
accepted international standard (ISO 9592) for the definition, display, and
modification of 2D or 3D graphical data, the additional manipulation of
geometrically related, objects, and the definition and modification of the
relationships between the data and the objects. The relationships and the
data are stored in a hierarchical data store.

LFT Specifies low-function terminal. The LFT is a STREAMS-based simple
character oriented tty-like terminal emulator for full screen processing. LFT
is a low-cost, low-function enablement feature intended to be used only
during system startup, installation and standalone diagnostics. It is not
expected to be used in steady-state processing. It supports all the display
adapters and keyboards available in AIX Version 4.1, but does not support
the mouse, tablet, or any other input devices.

X Window System 
Specifies the core of the display subsystem. The X Window System
supplies many functions to other components of the subsystem, including
resource management, window allocation, a transparent method for
communications between platforms, and 2D drawing operations. It has a
well-defined mechanism for extending its services. It operates using two X
components, the Xlib library and the X server that operate as follows:

Xlib Resides in a client and provides the API to users of X
Window System. Xlib passes the requests to the X server
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and events to the application. It interacts with the X server
using a protocol through an AIX or shared memory socket.

X Server The X server resides in the X executable and is a
component within the display subsystem core. The X
server consists of two parts. A part that is device
independent (dix) that interprets requests from the Xlib,
schedules client activity, manages the return of events and
input to the Xlib Library, and performs other generic
actions.

The X server also consists of a device-dependent part. The
device-dependent part renders the 2D graphics operations
defined by X Window System for the specific display
adapter. The loadddx GAI Load Modules implement this
interface.
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Application Programming Interface (API)
All types and combinations of applications may exist within a platform. Many of them
communicate with the user and display adapter in the server by means of the X Window
System protocol over a communications link. Others communicate by means of a graPHIGS
protocol over (perhaps a different) communications link.

A list of the generic application types include:

• Character-based applications

• Terminal emulator applications (such as  xterm)

• Toolkit applications (Motif and Xt)

• Display PostScript applications

• X Window System applications

• OpenGL applications

• GL 3.2 applications

• graPHIGS applications

• PEX applications

Applications bind to their appropriate library using any of the AIX system services available
to them. The API component provides a set of libraries and toolkits for use by application
developers.

API Names

Common Name Library Name Description

Xlib libX11.a Low-level X11 interface. Interface to communication
services.

Xt libXt.a Toolkit intrinsics provided by X Window System.

Xext libXext.a X Window System Extension libraries. Provides API
for the shape, cursor, colormap, DPS, Direct Access.

Input Library libXi.a Provides API for the standard X11 Input Extension.

Motif toolkit libXm.a Provides Motif widget and API support.

Motif Resource
Manager

libMrm.a Motif Resource Manager.

OpenGL libGL.a Provides OpenGL support.

OpenGLwidgets libXGLW.a Provides support for OpenGL widgets.

OpenGL utilities libGLu.a Provides a set of utilities to be used with OpenGL.

GL3.2 libg1.a Provides support for GL 3.2. Sometimes the math
library is also needed with GL 3.2.

PEXlib libPEX5.a PEXlib API.
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API Names

Common Name DescriptionLibrary Name

PEX PHIGS libphigs.a PHIGS API to PEX. This is sometimes called PEX_SI
PHIGS.

graPHIGS lib libgP.a graPHIGS shell (API bindings and interface to the
Nucleus)

The API and library architecture is shown in the Client Side portion of the Functional Block
Diagram of Display Subsystem figure, on page 11-8.

All communications begin with AIX sockets. In local or standalone platforms, the sockets
are local domain or in shared memory. Between distributed platforms, the sockets are
TCP/IP sockets. The type of communication or transport medium is transparent to the
application.

X Server
The X server plays an extremely important role within the display subsystem architecture.
The X server is the central arbiter and provider of graphical resources. It can be considered
the resource server of the display subsystem. The family of X server extensions rely upon
the X server. All input flows through the X server. Other components, such as the graPHIGS
nucleus or one of the 3D libraries, request basic graphics resources from the X server. The
X server’s role in the display subsystem architecture is shown in the Functional Block
Diagram of Display Subsystem figure, on page 11-8.

The subcomponents of the server are:

• Device Independent Core

• GAI Load Modules––loadddx, loadrms

• X Extensions

The X server communicates with the applications to present data to the screen. It has an
input and an output path. Input is defined as the direction of data flowing from an input
device, through the server, and out through the communications services to the application.
Output is defined as the direction of data flowing from an application, through the
communications services, through the server and device drivers, and onto the display
adapter.

The device-independent portion of the X server is made up of modified code from the X
Consortium. Specifically the dix (device-independent x), mi (machine independent), mfb
(monochrome frame buffer), cfb (color frame buffer) and os (operating system) directories
are included. The structure and subroutines have been modified to provide for windows that
are being accessed directly by one of the 3D GAI models. In other cases, modifications
have been made to optimize for performance. However, in all cases, the programmer
interfaces have remained the same to facilitate porting from other platforms.

The device-dependent portion of the X server is provided by the 2D GAI load modules
(loadddx and loadrms). The X Window System has a regular architecture to support the
definition of extensions. New and third-party extensions will be permitted and assisted.

The following extensions are supported in AIXwindows:
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X Window System Extensions

Common Name Official Name Source

DPS Adobe-DPS-Extension
DPSExtension

Adobe

PEX X3D-PEX MIT Standard

OpenGL OpenGL OpenGL Architecture Review
Board

cursor aixCursorExtension IBM

colormap blink xColormapExtension IBM

X Input XInputExtension MIT Standard

Shape SHAPE
Non Rectangular Window (Shape)
Extension

MIT Standard

Screen Saver SCREEN-SAVER MIT Draft Standard

The X Window System extensions have subcomponents in both the X server and API
display system components.

GAI Load Modules
One of the fundamental components of the display subsystem is the set of graphics
services provided X servers, the graPHIGS nucleus or one of the 3D libraries. These
services are contained within the GAI load modules. The GAI load module is bound to the X
server, graPHIGS nucleus or 3D library upon its initialization. It provides a library of graphics
function to the loading entity.

Except for the RMS load modules, the GAI load modules each provide the device-specific
code for one of the GAI models, as illustrated in the Block Diagram of the GAI Load
Modules figure. RMS provides a set of support routines that manage hardware resources
common to all models, such as windows and clipping regions, but not all models are
supported on all adapters. Consequently, there is be no need for full function RMS on this
class of adapter.
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The GAI load module directly controls the display adapters. When called, it passes direct
I/O operations to the display adapters.

The GAI load module also provides functions that assist the X server and other servers in
implementing a protocol to directly access the hardware and in managing the resources of
the display adapters. It also processes inputs from the display adapters, particularly
interrupts and pick events.

The GAI load modules are as follows:

loadddx The loadddx load modules implement the porting layer of the X server. Its
interfaces can be found in Strategies for Porting the X v11 Sample Server.
There is one loadddx for each graphics adapter supported. “Graphics
Adapter Interface (GAI) 2D Adapter Load Modules”, on page 11-35,
provides techniques for the development of a loadddx.

loadrms The loadrms load modules implement the resource management support
for the GAI models. This includes device specific management of window
geometries, windows, monitors, system queues, and clipping regions. This
resource management is most important for the 3D models accessing
hardware directly. “Minimum Resource Management Subsystem (RMS) for
2D Adapters”, on page 11-45, discusses the minimum RMS support needed
to implement a 2D graphics adapter.
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Note: The following load modules are necessary to provide certain types of 3D support to
adapters. They are not required for 2D adapters, but are listed here only for
informational purposes.

load3dm1 The GAI 3D Model 1 load modules provides the set of functions required to
support a PHIGS-like 3D graphics model within the display subsystem. The
support functions have been tailored to complement the architecture of the
graPHIGS Nucleus. The functions supported fall into the broad categories
of context support and rendering support. The 3dm1 load module provides
the support necessary for multiple graPHIGS nucleii to access a display
adapter.

load3dm2 The API within the display subsystem that supports immediate mode
graphics is GL. To support this API, GAI 3D Model 2 load module has been
defined. It provides direct support for high-function display adapters being
driven by GL applications.

load3dm5 The GAI 3D Model 5 load modules provide the rendering functions for
supporting the OpenGL API. These load modules configure the rendering
libraries depending on the amount of hardware support available for the API
to use. This may range from full hardware support to full software support
or some combination of the two. The 3D Model 5 was designed to fully
support both direct (server bypass) and indirect (protocol to X server)
rendering.

Kernel Components of the Display Subsystem
The kernel components are as follows:

LFT The LFT implements a simple character-oriented tty-like terminal emulation.
LFT is not intended to be used in a steady state RISC System/6000
environment. Customers are expected to use a graphical interface for all
processing except system startup, installation and stand-alone diagnostics

RCM The rendering context manager (RCM) permits time sharing of the adapter
between graphics processes. This sharing of the adapter is based upon
system requests. It also permits space sharing of the adapter, in the sense
of having the displayable area of the adapter. The RCM provides the
environment for multiple graphics processes independently accessing
display hardware. Each of these processes requests that the graphics
adapter be in a particular state; the state is called the rendering context for
that graphics process. It protects each graphics process from other
graphics processes.

For 2D adapters only displaying X Window System clients, the RCM is not
necessary.
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Display Device Driver
This material covers configuration information that is unique to graphics and display device
driver functions. Use it as a guide to the unique aspects of your adapter, the device driver
you write, and how the X server and the LFT subsystem use your device.

Note: This section is preliminary and a prerequisite for writing the ddx portion of your
adapter. It is recommended that this section be completed first before moving to the
other sections.

LFT Overview
The LFT (low-function terminal) is a simple character oriented, tty-like terminal emulation. It
replaces and simplifies the HFT (high-function terminal) of previous releases of AIX, no
longer supporting virtual terminals or hotkeying. The LFT supports all graphics adapters and
keyboards supported by AIX, but it does not support any other types of input devices such
as mouse or tablet; these have their own drivers.

The LFT is configured during phase two of the boot process. The LFT will be configured only
if there are graphics adapters already available. You must first configure your own adapter
and then allow your device to be used by the LFT.

Configuration and ODM Object Classes
Most of the configuration information in the ODM related to devices tells the system
management routines and other devices about your device. For graphics adapters some of
the information is for graphics adapters only while other information is general about any
device.

You must add the following objects for your device and information for other object classes
so they can find your device. For example, the LFT and X server need to know if your device
is available.

PdDv
The PdDv object class is the Predefined Device object class. It contains information about
the device and the driver it uses, the configuration methods, class, subclass, and type
information of the device.

PdAt
The PdAt object class contains information about various attributes of your driver that are
unique to graphics. There are also PdAt attributes that are used by system management
routines and the LFT subsystem.

Some of the attributes used for a graphics adapter are:

display_id The display_id attribute takes a value of the form 0x04xx0000, where:

04 Fixed.

xx An adapter specific ID.
0x00 – 0x7F are for IBM use only.
0x80 – 0xFF are for vendor adapters. Use a value not in the database.
Remember that all vendors use this range.

dsp_name This is the value of type field of the PdDv object class. It provides a unique
name for your adapter. Check the database to make sure your name is
unique.

dsp_desc Description of the adapter.
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scrn_height Screen height.

scrn_width Screen width.

color1–16 The 16 default colors to be used by the VDD.

belongs_to Indicates that the LFT subsystem can use this device. The string graphics
is the default value.

Refer to AIX Version 4.1 Technical Reference, Volume 5: Kernel and Subsystems for more
information on the LFT interface.

CuDep
The CuDep object class tells the LFT subsystem that your device is available for use. The
LFT subsystem reads this class to find out which devices it can open and use as a graphics
output device. You create an object in this object class based on the belongs_to attribute in
the PdAt object class for that adapter.

GAI
The GAI object class is in the /usr/lib/objrepos directory. This object class requires two
entries to tell the location of two modules that need to be loaded during X server startup.
(Although these entries are not needed directly by the display driver to run the LFT, they are
discussed here because all entries to the ODM should be handled by the define methods of
the display driver.)  The required entries are:

Adapter_Id This field is derived from the display_id attribute in the PdAt object class.
This is the decimal equivalent of the display_id attribute value and is used
as a link to the related objects in other object classes.

Module_Key This is the name of the module to be loaded when the X server starts.

Module_Path This is the path of the location of the module that is to be loaded.  The X
server prepends the string /usr/lpp/gai/ to this to form the full path name of
the load module.

Configuration Summary
IBM configuration methods for a VDD (that is, the graphics adapter driver) do not create a
/dev entry for their device. The device is exclusively used by the LFT subsystem. This
simplifies supporting device multiplexing.

Instead of a user level /dev entry, the LFT subsystem calls kernel services such as
fp_opendev and fp_ioctl. The LFT subsystem gets to the hardware specific functions of the
VDD through the d_dsdptr pointer of the devsw table that it obtains through the devswqry
kernel service.

VDD configuration methods should make sure that they save the address of the
phys_displays structure in the d_dsdptr pointer of the devsw table. Initialize the
phys_displays structure with pointers to various hardware specific functions in the VDD. If
you decide to create a /dev entry for the adapter device, you need to incorporate privilege
checks and protection mechanisms in your open and close routines.

The system finds out about your adapter through the PdDv object class and adds it to the
system through your configuration methods. You allow your device to be used by the LFT
through the belongs_to PdAt attribute.

Your configuration method puts an object into the CuDep object class that tells the LFT
subsystem to use your graphics adapter. The system management commands chdisp and
lsdisp use the name and description fields to show information about your adapter. Finally,
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the X server uses the display_id attribute to find out which ddx to load for your adapter. The
information for which one to load is contained in the GAI object class.

Display Device Driver Subroutines
The standard display device driver subroutines are as follows:

• vddconfig routine
• vddopen routine
• vddclose routine
• vddioctl routine
• interrupt handler

Note: All subroutines with names beginning vdd (virtual device driver) deal with the low
level display driver.  Do not confuse these with routines with names beginning vtt,
which are LFT Interface routines.

Configure the Device (vddconfig)

Purpose
Configures the display device driver.

Syntax
int vddconfig (devno, cmd, uiop)
dev_t devno;
int cmd;
struct uio *uiop;

Description
The vddconfig routine initializes the device driver into the device switch table. It also can
terminate the device driver by removing itself from the device switch table.

The vddconfig routine is called by the display configure, unconfigure, or reconfigure
method. This routine can also provide additional device specific functions relating to
configuration such as returning device Vital Product Data. This routine is invoked through
the sysconfig subroutine by the display configure method.

Parameters passed with this routine are:

devno Device major and minor number.

cmd What function this routine performs. The commands are:

INIT Specifies that the vddconfig routine is to perform an initialization
function. This involves checking the minor number in devno for validity,
and installing the device driver’s entry points in the device switch
table. This is accomplished by using the devswadd kernel service
along with a devsw structure to add the device driver’s entry points to
the device switch table for the major device number supplied in the
devno parameter.

This routine also copies the device dependant information from the
Device Dependant Structure (DDS) provided by the caller into the
device specific data area to be used when the device driver routines
are invoked. The address and length of the DDS is described in the
uio structure pointed to by the uiop parameter. The uiomove kernel
service can copy the DDS into the data area of the device driver.
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TERM Terminate the device driver and return any system resources. An
unconfigure or reconfigure method, through the configuration entry
point of the device driver, uses this command to remove resources
and system access to this driver. This routine determines if any opens
are outstanding on the specified devno. If not, it marks the device as
terminated and does not allow any subsequent opens to the device.

All dynamically allocated data areas associated with the specified
device number should be freed. If this termination removes the last
minor number supported by the device driver from use, the devswdel
kernel service should be called to remove the device driver’s entry
points from the device switch table for this devno.

Devices that can act as console should return an error without
terminating the device driver.

QVPD Query VPD is an optional function used by the device’s configure
method to request the return of device specific vital product data. This
information is usually used for diagnostic purposes. For this function,
the uio structure pointed to by uiop must be set up by the caller to
define an area in the caller’s storage in which this routine is to write
the vital product data. Use the uiomove kernel service to provide the
data copy operation.

uiop A pointer to a uio structure specifying the location and length of the caller’s data
area in which to transfer information to or from.

This pointer is pointing to a caller provided uio structure that describes the
location and length of the device-dependent data structure (for INIT) in which to
read the information or to the vital product data area (for QVPD) in which to write
the requested information. The uiomove kernel service can facilitate the copying
of information out of or into the area described by the uio structure. The format of
the uio structure is defined in the sys/device.h header file.

Return Values
The vddconfig routine should set the return code to zero if no errors were detected for the
operation specified. If an error is returned, the return code is one of the values defined in the
errno.h header file.

Open a Device (vddopen)

Purpose
Initializes the display device driver into the system.

Syntax
int vddopen (devno, devflag, chan, ext)
dev_t devno;
int devflag;
int chan;
int ext;

Description
The vddopen routine prepares a device for operation. The kernel calls vddopen when a
program uses an open or devopen subroutine.

The display device driver can only be opened by one process at a time (LFT). The open
subroutine can enforce this by maintaining a static flag variable, which is set to 1 if the
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device is open and zero if not. Each time it is called, vddopen checks the value of the flag
and, if it is not zero, returns with a return code of EIO to indicate that the device is already
open. Otherwise, vddopen sets the flag and returns normally. The vddclose routine later
clears the flag when the device is closed.

The vddopen routine should initialize the device. It should allocate the required system
resources to the device (such as DMA channels, interrupt levels and priorities) and register
its vddintr device interrupt handler for the interrupt level required to support the target
device (if required).

Parameters passed with this routine are:

devno Specifies both the major and minor device numbers.

devflag One of the following values:

DKERNEL The device was called by a kernel routine using DEVOPEN.

DREAD The device is being opened for reading only.

DWRITE The device is being opened for writing.

DAPPEND The device is being opened for appending.

DNDELAY The device is being opened in nonblock mode.

chan Channel number (ignored by this device driver).

ext The extended system call parameter (ignored by this device driver).

Return Values
The vddopen routine indicates an error condition to the application program by returning a
nonzero return code. The return code should be one of the values defined in the errno.h
header file.

Close a Device (vddclose)

Purpose
Resets the display device driver.

Syntax
int vdd_close (devno, chan, ext)
dev_t devno;
int chan;
int ext;

Description
The kernel calls the vddclose routine when a program uses a close or devclose
subroutine.

The vddclose routine resets the display to prevent generating any more interrupts or DMA
requests until it is opened again. It should free DMA channels and interrupt levels allocated
for this device. The intent is to free system resources used by this device until they are
needed again. The flag that was set by the vddopen routine should be reset.

Parameters passed with this routine are:

devno Specifies both the major and minor device numbers.

chan Channel number (ignored by this device driver).

ext The extended system call parameter (ignored by this device driver).
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Return Values
The vddclose routine indicates an error condition by returning a nonzero return code. The
return code should be one of the values defined in the errno.h header file.

Device Control (vddioctl)

Purpose
The vddioctl routine provides control commands and parameters to the device.

Syntax
long vdd_ioctl (devno, cmd, arg, devflag, chan, ext)
dev_t devno;
long cmd;
long arg;
ulong devflag;
long chan;
long ext;

Description
The vddioctl routine performs special I/O operations. These operations are normally device
specific. Within the LFT subsystem it is not used, providing only access to adapter
diagnostic functions. However, it is a valid porting strategy for upper level graphics libraries,
such as the adapter ddx, to use vddioctl. Possible operations include returning adapter bus
addresses for I/O, and DMA control.

Parameters passed with this routine are:

devno Both the major and minor device numbers.

cmd Command parameter indicating what function this routine should perform.

arg Parameter from the ioctl subroutine call that specifies an additional
argument for the cmd operation.

devflag Device open or other control flags.

chan Channel number (typically not used by this device driver).

ext The extended system call parameter (typically not used by this device
driver).

Return Values
The vddioctl routine indicates an error condition to the application program by returning a
nonzero return code. The return code should be one of the values defined in the errno.h
header file. Data may be returned to the user application by use of the copyout kernel
service.

Programming Notes
There are no required ioctl commands. This entry point should always return success if
there are no vendor-specific commands.

Interrupt Handling
Graphics adapters which generate interrupts need an interrupt handler. The interrupt
handler is made known to the system during the device driver initialization. The specific
interrupts to be handled are device dependent.
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LFT Interface Routines
All the following routines take a pointer to the vtmstruc structure associated with the virtual
terminal. The structure contains terminal specific data and pointers. The VDD uses this
structure to obtain the pointer to its local terminal dependent data area, as well as to
determine the position to move the cursor to when applicable. The following is a list of all the
routines necessary to define the LFT interface:

• Activate (vttact)
• Copy full line (vttcfl)
• Clear rectangle (vttclr)
• Copy line (vttcpl)
• Deactivate (vttdact)
• Define cursor (vttdefc)
• Initialize (vttinit)
• Move cursor (vttmovc)
• Scroll display (vttscr)
• Terminater (vttterm)
• Draw text (vtttext)

Note: Structures are described in “Display Driver Structure Descriptions”, on page 11-31.

Activate (vttact)

Synopsis
The vttact routine switches the Virtual Display Driver into the active state and gives the
virtual display driver exclusive access to the display hardware.

Description
This routine copies the presentation space in the frame buffer and establishes the correct
position of the hardware cursor.  The presentation space is first cleared and then the cursor
is placed in the upper left corner.

Also, the color palette is loaded.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttact)(vp);
struct vtmstruc *vp;

The parameter passed with this routine is:

vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
Only one instance of the device driver can be in the activated state at one time.

Calling this routine when the device driver is already activated causes unpredictable effects
on subsequent operations.

You must call the initialize (vttinit) routine (see page 11-25) prior to the first call to this
routine. Failure to do so causes unpredictable effects on the operation of this and
subsequent routines.
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Copy Full Lines (vttcfl)

Synopsis
The vttcfl routine copies the entire or partial content of the presentation space by one or
more full lines positions, either up or down. The source and destination points are within the
presentation space and the resulting information which lies beyond the absolute lower right
hand or upper left hand corner of the presentation space is lost.

Description
The command copies a sequence of one or more consecutive full lines of character and
attribute pairs in either direction within a presentation space and truncates the modified
content at the presentation space boundaries.

Use this command with the Clear Rectangle (vttclr) routine (see page 11-22) to insert new
lines into the presentation space.

In addition, the cursor can optionally be removed or left shown on the screen.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttcfl) (vp, source_row, dest_row,

length, update_cursor);
struct vtmstruc *vp;
long source_row;
long dest_row;
long length;
ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc associated with this terminal.

source_row Row number at which to begin the line copy operation.

dest_row Row number to which the line copy operation will copy the first row of the
source.

length Number of lines which are to be copied.

update_cursor
This is a Boolean value. If a device does not have a hardware cursor and
this parameter is set to zero, the cursor is not visible when this command
returns to the caller. Otherwise, the cursor is visible.

Note: If a display has a hardware sprite cursor, this routine does not affect the visibility of
the cursor. Rather, UPDATE_CURSOR specifies whether the cursor is moved to the
position specified in vp–>mparms.cursor.

Return Values
The return value 0 indicates successful completion.

Programming Notes
The actual amount of data copied varies, depending on the physical display adapter.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.
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Clear Rectangle (vttclr)

Synopsis
The vttclr routine clears any specified rectangular area of the screen.

Description
This routine stores a space in each character position of the rectangular area with any
combination of the following attributes:

• Foreground color (one of 16 different colors)
• Background color (one of 16 different colors)
• Font (one of 8 different fonts)
• Underscore
• Reverse image
• Blink
• Bright
• Non-display

If the real display does not have a hardware cursor, then the cursor may optionally be
displayed or not displayed when this routine returns to the caller. If the real display has a
hardware cursor, the cursor is always displayed when the routine returns to the caller.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttclr)(vp, screen_pos, attr, update_cursor);
struct vtmstruc *vp;
struc vtt_box_rc_parms *screen_pos;
ulong attr;
ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

screen_pos Pointer to a vtt_box_rc_parms structure with the coordinates of the
upper-left and lower-right corners of the rectangular area that is cleared.
The vtt_box_rc_parms structure is defined in “Display Driver Structure
Descriptions” on page 11-31.

attr Attributes of each character in the specified rectangular area.

update_cursor
This is a Boolean value. If a device does not have a hardware cursor and
this parameter is set to zero, the cursor is not visible when this command
returns to the caller. Otherwise, the cursor is visible.

Note: If a display has a hardware sprite cursor, this command does not affect the visibility
of the cursor. Rather, the update_cursor parameter specifies whether the cursor is
moved to the position specified in the vtmstruc structure.

Return Values
The return value 0 indicates successful completion.

Programming Notes
If a rectangular area is not valid (such as coordinates outside the presentation space,
upper-left and lower-right coordinates switch), the result of running this routine is
unpredictable.
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The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Copy Line Segment (vttcpl)

Synopsis
The vttcpl routine copies a specified segment in one or more consecutive lines either left or
right.

Description
This routine copies a sequence of one or more consecutive character/attribute pairs in either
direction within a line and truncates the modified content at the line boundaries.

The contents of the preceding lines are not affected. Succeeding consecutive lines,
however, can be similarly copied if the number of lines requested to operate on is greater
than one.

Use this routine with the Clear Rectangle (vttclr) routine (see page 11-22) to obtain the
repetitive inline “move” function.

If the starting point is the first position in the first line and the number of lines requested is
equal to the number of rows in the presentation space, then the entire screen is scrolled
right. Otherwise, there is a partial screen scroll.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttcpl) (vp, rc, update_cursor);
struct vtmstruc  *vp;
struct vtt_rc_parms *rc;
ulong  update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

rc Pointer to a vtt_rc_parms structure containing the “copy to” and “copy
from” information. This structure is defined in “Display Driver Structure
Descriptions” on page 11-31.

string_length Number of character/attribute pairs to be copied in each line.

string_index Index of the first character to display.

start_row Beginning line on which to operate.

start_column Starting position, within each line, of the source to be copied from.

dest_row Last line on which to operate.

dest_column Starting position, within each line, of the destination to be copied to. If the
destination column is bigger than the starting column, the specified line
segment is copied to the right. Otherwise, it is copied to the left.

update_cursor
This is a Boolean value. If a device does not have a hardware cursor and
this parameter is set to zero, the cursor is not visible when this routine
returns to the caller. Otherwise, the cursor is visible.
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Note: If a display has a hardware sprite cursor, this routine does not affect the visibility of
the cursor. Rather, update_cursor specifies whether the cursor is moved to the
position specified in the vtt_cursor structure.

Return Values
The return value 0 indicates successful completion.

Programming Notes
The actual amount of data copied varies, dependent on the physical display adapter.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Deactivate (vttdact)

Synopsis
The vttdact routine switches the virtual display driver into the inactive state.

Description
Recall that the device driver model maintains a presentation space model. When the display
hardware has a character buffer, that buffer will, in general, be used to contain and maintain
the presentation space data while a given instance of the device driver is active (the so
called integral presentation space case). If no hardware character buffer is used to maintain
the presentation space the device driver must maintain a presentation space while either
Active or Inactive.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttdact) (vp);
struct vtmstruc *vp;

The parameter passed with this routine is:

vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
Calling this routine when the device driver is already deactivated causes unpredictable
effects on subsequent operations.

Define Cursor (vttdefc)

Synopsis
The vttdefc routine changes the shape of the cursor to one of six predefined shapes.

Description
Select the shape of the cursor from a set of shapes which is dependent on the display
device. Selectors 6 through 255 are reserved. The default (selector 2, the double
underscore) is used if you specify a reserved selector.

This routine can also reposition and turn off the cursor.
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Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttdefc) (vp, selector, update_cursor);
struct vtmstruc *vp;
uchar selector;
ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

selector Cursor shape to display. The available shapes are:

0 No cursor
1 Single Underscorer
2 Double Underscore
3 Half Blob
4 Double Line
5 Full Blob
Other values Default to double underscore.

update_cursor
This is a Boolean value. Whether the cursor should be made visible after its
shape is changed.

Note: If a display has a hardware sprite cursor, this command does not affect the visibility
of the cursor. Rather, Show_Cursor specifies whether the cursor is moved to the
position specified in Cursor_Pos.

Return Values
The return value 0 indicates successful completion.

Programming Notes
The cursor is invisible on all displays if the selector value is zero (a null shape is chosen).
The update_cursor parameter does not affect the visibility of the cursor on displays with
hardware cursors.

If you specify an invalid cursor position, the results are unpredictable.

On display adapters that do not support a hardware cursor, the cursor shape is generated
with an exclusive-or operation.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Initialize (vttinit)

Synopsis
The vttinit routine initializes the internal state of the virtual display driver. It also allows the
caller to select up to eight different fonts for subsequent use by the virtual terminal (see the
Draw Text (vtttext) subroutine on page 11-29). All characters in all the selected fonts must
be the same size.

Description
This routine initializes the internal state of the virtual display driver. A list of eight font IDs
may optionally be passed to this procedure.
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All characters in all fonts in the list must be the same size. Any font whose character box
size differs from that of the first font in the list is replaced by the first font in the list.

To allow custom font selection, vttinit is passed a font_id. Using the chfont command, the
user can create a font_id which is stored in the ODM to be used at LFT configuration time.
If font_id is not equal to –1, then the index is used to load the font table.  If the font_id is
equal to –1, then there has been no custom font selection, and the LFT uses the first
available font in the font table.

If the font list is validated or a default font is found:

• The presentation space (PS) is initialized with space characters and the canonical
attribute of each character in the PS is set to zero.

• The cursor is moved to the upper left corner of the PS and displayed if the virtual display
driver is active.

• The default cursor shape (double underscore) is selected.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttinit)(vp, font_ids, ps_size);
struct vtmstruc *vp;
struct fontpal  *font_ids;
struct ps_s *ps_size;

Parameters passed with this routine are:

vp Pointer to the virtual-terminal-specific data area.

font_ids Pointer to a fontpal structure that contains the font IDs to use for the
various fonts selected by the attribute encoding. The font order is important
as it matches the font selector enumerated scalar in the canonical
representation of attributes (see “vtt_cp_parms” on page 11-31). This
parameter is optional. If it is not specified, one default font will be selected.

ps_size Pointer to a ps_s structure that contains the width and height (in
characters) of the presentation space.

Return Values
This routine sets the height and width of the presentation space in the ps_s parameter. If it is
unable to allocate the local data, vttinit returns ENOMEM. The return value 0 indicates
successful completion.

Programming Notes
All fonts specified in this routine should be the same size because of the default actions.

Call this routine before the first call to the activate (vttact) routine (see page 11-20). If you
do not, there are unpredictable effects on subsequent operations.
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The PS size is calculated using the following formulas (all division is integer division):

Height of the real screen
(in picture elements)

Number of rows in
a character box

Width of the real screen
(in picture elements)

Number of columns in
a character box

Presentation Space Height =

Presentation Space Width =

Move Cursor (vttmovc)

Synopsis
The vttmovc routine moves the cursor to the indicated position.

Description
The current cursor shape is repositioned to the specified character row and column. The
cursor is always visible after this routine if the cursor has been defined as a visible shape,
and this virtual terminal is active.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttmovc) (vp);
struct vtmstruc *vp;

The parameter passed with this routine is:

vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
If an invalid position is specified, the results are unpredictable.

Scroll (vttscr)

Synopsis
The vttscr routine scrolls the entire contents of the display screen up or down.

Description
The current display screen contents are moved the indicated number of lines up or down.
When scrolling up, the lines moved off the screen at the top are discarded and the indicated
number of lines at the bottom are cleared to blanks with the attributes provided. When
scrolling down, the lines moved off the screen at the bottom are discarded and the indicated
number of lines at the top are cleared to blanks with the attributes provided. The cursor may
also be repositioned and made invisible.
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Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttscr)(vp, lines, attributes,
update_cursor);
struct vtmstruc *vp;
long lines;
ulong attributes;
ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

lines Number of lines to scroll. A positive value moves the screen contents
toward the top. A negative value moves the screen contents toward the
bottom of the screen.

attributes Attributes of the blanks to be inserted in the new lines that appear at either
the top or bottom of the screen.

update_cursor
This is a Boolean value. Whether the cursor should be made visible after
the scroll.

Note: If a display has a hardware sprite cursor, this command does not affect the visibility
of the cursor. Rather, Show_Cursor specifies whether the cursor is moved to the
position specified in Cursor_Pos.

Return Values
There are no return values.

Programming Notes
If a position is not valid, the results are unpredictable.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Terminate (vttterm)

Synopsis
The vttterm routine prevents interrupts to a virtual terminal and must be issued when the
virtual terminal closes.

Description
A virtual terminal in the process of closing no longer requires interrupts from its I/O devices.
In fact, after the virtual terminal process terminates, virtual interrupts directed to that process
cause a system failure. To prevent such problems, the virtual terminal must call the
terminate routine before terminating itself.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttterm)(vp);
struct vtmstruc *vp;

The parameter passed with this routine is:
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vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
Not issuing this routine when closing causes a system failure.

For display adapters that generate interrupts serviced by the virtual terminal, the routine
ensures that the adapter is not reinitialized when the virtual terminal process terminates.

For device drivers which allocate storage for their presentation space, this routine will free
that storage and all the local data areas.

Draw Text (vtttext)

Synopsis
The vtttext routine draws a string of qualified ASCII characters into the refresh buffer and
presentation space buffer of the display device.

Description
Each supplied ASCII character is drawn into the refresh buffer and/or presentation space
buffer beginning at the specified starting row and column. At the end of this character
drawing operation, the cursor is redrawn at the specified new location.

Each character drawn is mapped to the appropriate font range by two mechanisms. First,
each character will be logically ANDed by the value supplied in the code point mask
parameter. It is expected that this parameter will contain either 0xFF or 0x7F which will have
the effect of wrapping the code point in either a seven-bit range or an eight-bit range. Next,
the code point base parameter is added to each supplied character to find the correct
symbol in the font.

Each character will be drawn with a device specific attribute derived from the canonical
attribute specification in the vtt_attr parameter.

The cursor can be moved or redrawn by this routine if the update_cursor parameter is set to
true (1). In this case, a cursor of the type specified by the Define Cursor (vttdefc) routine
(see page 11-24) will be moved or redrawn, as appropriate for the given hardware at the
location specified in the vtmstruc parameters.

Note: The no show state (zero) of update_cursor does not guarantee that the cursor will be
invisible after this operation. Whether or not it is invisible is a device-dependent
characteristic.

Recall that the device driver model maintains a presentation space model. Usually, where
the display hardware has a character buffer, that buffer is used to contain and maintain the
presentation space data while a given instance of the device driver is active. This is the
integral presentation space case.

If no hardware character buffer is used to maintain the presentation space, this is the disjoint
refresh buffer case, in which the driver must maintain an off adapter presentation space
while active or inactive.

Syntax
Use this routine with the following call:
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rc = (*vp–>display–>vtttext)(vp, ascii_string, rc, cp,
update_cursor);
struct vtmstruc *vp;
char *ascii_string;
struct vtt_rc_parms *rc;
struct vtt_cp_parms *cp;
ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

ascii_string Adjustable extent array of characters which are to be drawn on the display.
The length of this string must be greater than or equal to the string_length
parameter in the vtt_rc_parms structure.

rc Pointer to a vtt_rc_parms structure containing the ASCII string, row, and
column information.

string_length How many of the characters in the ASCII string are to be drawn. Note that
this drawing operation performs no end-of-line check so that unpredictable
results will occur if the combination of string_length and start_column
causes an attempt to write off the end of the line.

string_index Index of the first character in ascii_string that is to be displayed.

start_row Specifies, in the presentation buffer and display refresh buffer, the row
number of the first character drawn. This parameter has a unity origin.

start_column Specifies, in the presentation buffer and display refresh buffer, the column
number of the first character drawn. This parameter has a unity origin.

dest_row
dest_column Not used.

cp Pointer to a vtt_cp_parms structure containing the ASCII string, and row
and column information.

cp_mask 8-bit value which is logically ANDed with each ASCII character before font
translation. Legal values for this parameter are either 0xFF or 0x7F.

cp_base Value which allows each ASCII character to be translated to a final font set,
larger than 256 code points. The ASCII character is masked by cp_mask.
The masked ASCII character is logically added to the value of cp_base to
determine the actual character, in a 10-bit selection, to be displayed.

attributes Canonical representation of the desired attributes which should be used
when drawing the character string. See the discussion of canonical attribute
representation under “vtt_cp_parms” on page 11-31.

cursor A vtt_cursor structure that defines the x and y position of the cursor.

update_cursor
This parameter is a Boolean value and controls whether the cursor should
be redrawn at the end of this draw routine. The purpose is to allow the LFT
subsystem to control how much APA display processing is wasted in
undrawing and redrawing cursors.

Note: If a display has a hardware sprite cursor, this routine does not affect
the visibility of the cursor. Rather, update_cursor specifies whether
or not the cursor is moved to the position specified in the
vtt_cp_parms structure.
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Return Values
There are no return values.

Programming Notes
Use this routine only to draw in one single line of the display at a time. Length specifications
that would imply a wrap to next line in the middle of the call will cause unpredictable results
in displays with invisible refresh buffer space at the end of the visible line.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Display Driver  Structure Descriptions

vtt_rc_parms
The vtt_rc_parms structure is supplied as a parameter to several of the virtual display
driver routines, notably the Draw Text routine, the two copy routines and the Read Screen
Segment routine.

/********************************************************************/
/* row column length structure interfaces to VDD Routine             */
/*********************************************************************/
struct vtt_rc_parms {
        ulong string_length;   /* length of character string that    */
                               /*   must be displayed                */
        ulong string_index;    /* index of the 1st char to display   */
        long  start_row;       /* starting row for draw/move         */
                               /*   operations, unity based.         */
        long  start_column;    /* starting column for draw/move      */
                               /*   operations, unity based          */
        long  dest_row;        /* destination row number for move    */
                               /*   operations, zero based           */
        long  dest_column;     /* destination column number for move */
                               /*  operations, zero based            */
};

vtt_box_rc_parms
The vtt_box_rc_parms structure is supplied as a parameter to the Clear Rectangle routine
entry points.

/*******************************************************************/
/* the vtt_box_rc_parms structure is supplied as a parameter to the */
/* VDD clear rectangle routine.                                     */
/********************************************************************/
struct vtt_box_rc_parms {
        long row_ul;           /* row number of upper–left corner   */
                               /*   of the upright rectangle        */
        long column_ul;        /* col number of upper–left corner   */
                               /*   of the upright rectangle        */
        long row_lr;           /* row number of lower–right corner  */
                               /*   of the uproght rectangle.       */
        long column_lr;        /* col number of lower–right corner  */
                               /*   of the  upright rectangle       */
};

vtt_cp_parms
The vtt_cp_parms structure is supplied as a parameter to the Draw Text routine. The
vtt_cursor substructure is passed as a parameter to several procedures such as Define
Cursor, Move Cursor, and Scroll Up.
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/**************************************************************/
/* code point base/mask and cursor positioning parameter      */
/* structure for use in vtttext  replace text                 */
/**************************************************************/
struct vtt_cp_parms
{
       ulong cp_mask;      /* code point mask for implementing */
                           /*   7 or 8 bit ascii               */
       long cp_base;       /* code point base, added to code   */
                           /*   point if base >= 0             */
       ushort attributes;  /* attribute bits                   */
       struct  vtt_cursor cursor;  /* cursor x and y position  */
};

The definitions and default states of the canonical attributes are:

FG COLOR Foreground color specification in writing into the frame buffer. The default
value is device dependent.

BG COLOR Background color specification to be used in writing into the frame buffer.
The default value is device dependent.

FONT_SELECT
Select for the font to be used in writing into the frame buffer. A value of zero
selects the first font ID supplied in the VTTINIT font ID array as the active
font for drawing. A value of seven selects the eighth font ID array value as
the active font for drawing. The default value is zero.

NO_DISP Select non-displayed mode for characters. One equals non-displayed, zero
equals displayed. Default value is zero.

BRIGHT Select bright (intensified) display mode. One equals intensified. Zero equals
normal intensity. Default value is zero.

BLINK Select blinking representation. One equals blinking characters. Zero equals
non-blink. Default value is zero.

REV_VIDEO Select reverse video representation. One equals reversed image. Zero
equals normal image. Default value is zero. To get the effect of reverse
video on all adapters, this bit must be set to one. Swapping the foreground
and background colors will not yield the desired result on all adapters
because these fields may in fact be ignored by some virtual device drivers.

UNDERSCORE
Select underscoring of characters. One equals underscore each character.
Zero equals no underscore. Default value is zero. A default color table is
provided for any display type. The size and organization of color tables is
device dependent.

No single device supports all the canonical attributes in any configuration. For example,
when a canonical attribute is supplied to the Draw Text routine, the canonical form is
interpreted to something usable by the given device. When a subsequent call to the Read
Screen Segment routine is made, the internally stored attributes will be mapped back to
canonical form. This back transform has some loss of information in that canonical attributes
that are unsupported by a given device will be set to a default state instead of the originally
supplied state.

font_data
The font_data structure is initialized by the LFT and is used by the VDD to get the
necessary font information for displaying text.
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struct font_data
{

ulong font_id; /* font_data index (1 based) */
ulong font_attr; /* 0=plain, 1=bold, 2=italic */
ulong font_style; /* 0=apa,*/
long  font_width; /* charbox width  in pels*/
long  font_height; /* charbox height in pels*/
long  *font_ptr; /* pointer to font file*/
ulong font_size; /* size of font structure*/

};

phys_displays
The phys_displays structure is defined in /usr/include/sys/display.h.

/*******************************************************/
/* presentation space structure                        */
/*******************************************************/

struct ps_s { 
        long ps_w;        /* presentation space width  */
        long ps_h;        /* presentation space height */
};

/****************************************************************/
/* cursor positioning structure used as parameter to VDD routine */
/*****************************************************************/

struct vtt_cursor {
         long  x;
         long  y;
};

struct vtmstruc {
       struct phys_displays *displays;     /* display this VT is using */
       struct vtt_cp_parms  mparms;        /* attribute+cursor position*/
       char                 *vttld;        /* pointer to VTT local data*/
       off_t                vtid;          /*virtual terminal id = 0   */
       uchar                vtm_mode;      /* mode = KSR               */
       int                  font_index;    /* –1 means use ’best’ font */
       int                  number_of_fonts; /* number of fonts found  */
       struct font_data     *fonts;        /* font information         */
       int                  (*fsp_enq)();  /* font request enqueue func*/
};

Device Dependent Structure (DDS)
The Device Dependent Structure is specific to the display adapter. The contents must
contain the addresses, interrupt levels, DMA areas, and other configuration information set
by the configuration method.

The following is an example Device Dependent Structure:
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struct display_dds
{

int adapter_busaddr;
int int_level;
int int_class;
int slot_number;
int color_tablet[16];
int dms_channel;
int dma_address;
int screen_height_mm;
int screen_weight_mm;
int display_id;

};
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Graphics Adapter Interface (GAI) 2D Adapter Load Modules
The device-dependent portion (ddx) of the X server code (the portion of the server code that
actually manipulates the adapter) is located in dynamically loadable modules under the
current GAI architecture. These modules are loaded at server invocation time when a user
requests that the server run on a specific adapter via command-line flags, or the default
adapter(s) in the absence of a specific request. Adapter modules not requested in this
instantiation of the server are not loaded.

The interface between the device-independent (dix) portion of the server and the device
dependent (ddx) subsystem is documented in Strategies for Porting the X11 Sample Server
by Angebranndt and others. The porting layer specified in the porting guide is a well-defined
interface which allows third party vendors to supply those device-dependent portions of the
X server required to support a new device. In the current IBM GAI architecture, the ddx
resides in dynamically loadable, device-dependent code modules (loadddx’s) and are
required to support execution of the X server on display adapters. By utilizing a dynamic
loading scheme, the GAI architecture facilitates the independent addition of new driver
modules by third-party vendors, as access to object modules for static binding is not
necessary.

The loadable module technique is utilized to support the addition of extensions to the X
Window System as well. Loading only the required extensions for a particular invocation of
the server limits the system resources from being consumed. An additional benefit is that
third-party extension writers can add their X server extensions without requiring server
integration and rebuilding.

This information highlights the process of initializing and destroying 2D minimal RMS
adapter instances within the GAI architecture. Details regarding the implementation of an X
device dependent subsystem (ddx) can be found in standard documents, such as The X
Window System Server by Israel and Fortune.

Loadable DDX Interface
The process by which the X server and one or more adapters is initialized is divided into
three steps:

• Selecting the adapter or adapters through command-line flags or default actions

• Loading the appropriate load module and dynamic binding with X server executable

• Initializing the hardware and the X server screen structure

Selection of Adapters
Command-line flags allow the user to specify a number of characteristics of the X server
display. Characteristics relating to adapter selection include the number of screens for the
display, configuration of the screens for the display, and default visual and default depth of
the display. Command-line flags for adapters include the logical name returned from the AIX
lsdisp command as they are stored in the Object Data Manager database (the ODM
database contains the configuration information for the entire system). As an example, the
lsdisp command returns the following information if the system is configured with a Color
Graphics Display Adapter and a POWER_Gt1 Graphics Adapter:

DEV_NAME SLOT BUS ADPT_NAME DESCRIPTION

sga0 0J sys POWER_Gt1 Graphics Adapter
gda0 03 mca colorgda Graphics Adapter
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If no display characteristic command-line flags are specified, the default actions are used.
These default actions include:

• Use of all configured adapters. If there is only one graphics adapter installed, the X
server will be initialized on that graphics adapter. If more than one adapter is configured
in the system, the X server will be initialized in multihead mode.

• Use of PseudoColor visual for the default visual (or GrayScale visual for grayscale
adapters).

• Use of default depth (usually 8).

If the user chooses to bypass the default server configuration options and initialize on less
than all available display adapters, the –P Row Column DeviceName command-line option
must be specified. If the user chose to initialize the X server on Color Graphics Display
Adapter (assuming output from lsdisp above), the appropriate command line options would
include the flag to initialize on Color GDA only, –P11 gda0.

As part of the adapter initialization process, the X server main function calls an operating
system dependent subroutine, ProcessCommandLine. ProcessCommandLine calls
FindAllAvailableDisplays function, which queries the ODM database for all available
graphics adapters in the system and sets up a DisplayRec structure for every adapter
found. The DisplayRec structures are actually stored in a global dynamic array,
AvailableDisplays. FindAllAvailableDisplays returns to ProcessCommandLine which
calls a device-dependent command line parsing function, ddxProcessArgument.
ddxProcessArgument handles some GAI-specific global variable initializations based on
the command line flags specified for wrapping pointer in x and y directions, backing-store
configuration, extension loading, and adapter initialization. It is in ddxProcessArgument
that the remaining structure members in the adapter DisplayRecs are initialized to specify
users interest in X initialization on a given adapter. When ddxProcessArgument
encounters a –P flag, it uses the logical name associated with the flag as a key in the ODM
CuDv database and retrieves the associated entry. If the entry does not exist, an error
message is displayed. When an unexpected option or invalid value is specified for a flag,
the X server displays the usage message and ignores the option or terminates initialization,
depending on the severity of usage error. Both ProcessCommandLine and
ddxProcessArgument validate command line options and display error messages.

Assuming that there are no errors detected by ddxProcessArgument, InitOutput is called
from the main subroutine,  passing a pointer to the screenInfo structure. The pixmap and
bitmap format information is initialized in the screenInfo structure and for each requested
adapter aixAddDisplay is called to load the loadddx if it has not been bound in (on server
reset, the module would have already been loaded) and evoke the drivers entry function, for
example xxxEntryFunc which sets device specific pixmapFormat information and calls the
MIT dix function AddScreen which “increases” the size of the screenRecs (internal server
structure) array and calls the device-specific initialization routine specifying the adapters
screen number, a pointer to its ScreenRec, and the command line argument vector and
argument count where the adapter will be initialized, screen vectors set, and access to the
adapter given to X and rms configured via CreateAdapter call.
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main

ProcessCommandLine

FindAllAvailibleDisplays

ddxProcessArguments

InitOutput
   open/dev/rcm
   for each display requested call
   aixAddDisplay to initialize

aixAddDisplay
  loads adapter loadddx if not loaded
  calls adapter loadddx entry function

xxxEntryFunc
  device dependent module entry
  pixmap format structure initialization
  pass xxxScrInit pointer fo AddScreen

AddScreen
  Allocate Screen Structure
  Initialize Screen Structure
  Allocate Screen Privates

xxxScrInit
  Set Screen and/or screen private vectors
  ioctl(aixScreenFD(pScreen),HFHANDLE,&gscHandle)
  allocate/initialize gc/window privates
  CreateAdapter call

Server Initialization Sequence for the Selection and Initialization of Displays

X Server Initialization Subroutines
Note: The following subroutines are for informational purposes only.
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ddxProcessArgument

Purpose
Processes the command line arguments for the X server.

Syntax
int ddxProcessArgument (argc, argv, i)
int argc;
char *argv[];
int i;

Description
The ddxProcessArgument subroutine is an AIXwindows supplied subroutine. There is one
for the X server rather than one for each ddx. It is called for each flag one flag at a time. Its
parameters include the argc and argv parameters which were used for this invocation for
the X server and the current index into argv. ddxProcessArgument looks at the current
argument and returns zero if the argument is not a device-dependent one, and otherwise
returns a count of the number of elements of argv that are part of this one argument.

Parameters
argc Specifies the number of options in the argv list.

argv  Specifies an array of options that were passed to the X Server at its
invocation.

i Specifies the current index into argv list.

Flags
ddxProcessArgument processes the following arguments (not a complete list):

Mouse Processing Flags
Flag Name Variable Set

–wrapx aixXWrapScreen
Specifies mouse behavior when the mouse’s hot spot reaches the left or
right borders of any root window.

–wrapy aixYWrapScreen
Specificies of mouse behavior when the mouse’s hot spot reaches the top
or bottom borders of any root window.

–wrap aixXWrapScreen, aixYWrapScreen
Sets both the –wrapx and –wrapy flags.

Other Flags
Flag Name Variable Set

–bs aixAllowBackingStore
Enables backing store support on all screens.

–nobs aixAllowBackingStore
Disables backing store support on all screens.

–x <extention name>
how_many_extensions, extension_list
Tracks number of and list of requested extensions.

–T aixDontZap
Disables the Ctrl-Alt-Backspace key sequence used to kill the server.
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–wp aixWhitePixelText
Allows you to specify a WhitePixel color.

–bp aixBlackPixelText
Allows you to specify a BlackPixel color.

–n dpy
Specifies the connection number of the server.

–layer <int> layer
Specifies the requested layer for the default visual if the ddx supports
overlays and underlays.

Processing of Displays Specified on the Command Line
The following flags can be used to specify the display on the command line. If a display is
not specified, by default, the X server is invoked on all available displays in a multihead
configuration by slot order. The first active display found becomes the equivalent of –P11
(Screen 0). The next active screen found becomes the equivalent of –P12 (Screen1).

–force Specifies that the X server may be invoked from tty.

–P Row Col DisplayName 
Specifies that the X server is to be invoked on the display specified by the
display_name parameter. Valid values for this field are those found in the
logical_name field of the CuDv.

In all of the flags, the display_name parameter is specified by the logical name of the
device. You can find out what this logical name is by executing the lsdisp command.

Note: Only the ProcessCommandLine and ddxProcessArgument subroutines should
process command-line flags.

FindAllAvailableDisplays

Purpose
Initializes the DisplayRec structure for the X server.

Syntax
void FindAllAvailableDisplays (argc, argv)
int argc;
char **argv;

Description
The FindAllAvailableDisplays subroutine queries the ODM to find out information about all
possible graphics displays that are available. It returns a initialized DisplayRec structure for
each display and sets the NumAvailableDisplays global variable to the number of displays
attached to the system.

The information needed to obtain a list of all available displays is contained in two ODM
classes, the PdAt (predefined attributes) and the CuDv (customized devices). To find all the
active displays attached to a system, two ODM queries are needed––one to find all the
graphics devices, and one to subset the available devices from all the graphics devices.

For each display attached to the hardware, the FindAllDisplays subroutine initializes the
following information:

dev_id Specifies the GAI adapter ID. This is used as a key to the ODM query of
the GAI load modules. This value is stored in the predefined attribute
display_id.
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name Set to the name of the display as returned by the lsdisp command (i.e.
ppr0). This value is the logical name of the device as retrieved from the
PdAt query of all the graphics devices.

loadModule Set to the loadddx load module for the specified adapter. It is a
concatenation of the Module_path as stored in the GAI class and the
GAI_PATH. The value stored is the full path not the partial path as retrieved
from the GAI.

EntryFunc Set to NULL. This gets initialized when the loadddx load module is actually
loaded.

x_pos Set to 0. This is initialized to the appropriate value later in the initialization
cycle.

y_pos Set to 0. This is initialized to the appropriate value later in the initialization
cycle.

requested Set to False. Set to True later in the initialization cycle when the adapter is
actually requested.

display_number
Set to the current value of the variable used to control the for loop.

Parameters
The argc and argv (count and vector) command-line arguments are passes in for
processing of the –force flag. The –force flag allows the X server to be started from a tty.

InitOutput Subroutine

Purpose
Initializes the screenInfo imageByteOrder, bitmap information, and pixmap format
information.

Syntax
void InitOutput (screenInfoPtr, argc, argv)
ScreenInfo *screenInfoPtr;
int argc;
char *argv[];

Description
The InitOutput subroutine initializes the screenInfo imageByteOrder, bitmap information,
and pixmap format information. The InitOutput subroutine obtains a private index for the
screen and one for the AIX extensions. These indexes are global variables named
aixExtScreenPrivateIndex and aixScreenPrivateIndex. They are used as private indexes
for the structure containing the vectors for the AIX private extensions (cursor and colormap)
and the AIX screen private structure and vectors.

If there were no screens specified on the command line, the subroutine processes the
default screens. The default screens are all currently available screens, the first screen
found in the ODM.

The InitOutput subroutine opens the /dev/rcm file once for each invocation of the X server
and not done once per head in a multihead environment. The subroutine stores the file
descriptor from the open in the screenInfoPriv structure.

For each screen, the InitOutput subroutine calls subroutines to load and initialize or
reinitialize the adapter. The serverGeneration global variable can be used to determine if
the X server is being invoked or reset.
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Parameters
screenInfoPtr Specifies a pointer to the screenInfo structure. The screenInfo structure

contains a section of per server information as well as an array of screen
information.

argc Specifies the number of options in the argv list.

argv Specifies an array of options that were passed to the X server at its
invocation.

Device-Dependent Initialization Subroutines
Note: These routines must be provided by the loadddx module.

xxxentryFunc Subroutine

Purpose
Returns information from the loading of the loadddx module.

Syntax
int xxxentryFunc (index, pScreen, argc, argv)
register int index;
register ScreenPtr pScreen;
int argc;
char **argv;

Description
The address of the entry point of the loadable driver is returned when the load system call
is performed on the loadddx module. The function is invoked in the InitOutput subroutine
and performs some or all of several actions. This function must be provided by the load
module driver.

The xxxentryFunc function initializes any appropriate pixmap formats and then calls
AddScreen subroutine to allocate the per screen structure and provide addition dix
initialization of the screenInfo structure. The AddScreen subroutine allocates the screen
structure, links it appropriately into dix structures and then calls a ddx supplied routine to
finish the initialization.

A pointer to xxxentryFunc is stored in the EntryFunc field of the DisplayRec structure for
this adapter. In practice, this function can be called whatever the driver implementor
chooses. By convention it is referred to as xxxentryFunc.

Parameters
index Specifies the index of this screen in the array of screens for the X server.

pScreen Specifies a pointer to the screen structure.

argc Specifies the number of options in the argv list.

argv Specifies an array of options that were passed to the X server at its
invocation.

Return Values
Success

Failure
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xxxScrInit

Purpose
Initializes the screen structure for each screen and performs device dependent initialization
as required.

Syntax
Bool xxxScrInit (index, pScreen, argc, argv)
register int index;
register ScreenPtr pScreen;
int argc;
char **argv;

Description
There is one xxxScrInit subroutine for each adapter load module. Its address is passed to
the AddScreen dix subroutine and is called from the AddScreen subroutine through the
function pointer to do device dependent initialization of the per-screen structure as well as
window and gc devPrivates. The xxx in the subroutine name is replaced with some
meaningful prefix, such as the adapter name. This subroutine performs the following:

• Gets a gscHandle from the RCM by making an ioctl call with a GSC_HANDLE
parameter.

• Calls the CreateAdapter function for the 2D model.

• Registers this process as a graphics process by making the aixgsc system call with the
MAKE_GP parameter.

• Initializes pScreen structure. This includes any visual structures for the screen.

• Allocates and initializes pScreenPrivate vectors (calls aixAllocatePrivates) and
initializes AIX extension vectors––these are the vectors for the cursor and colormap
extensions.

• Allocates and initializes any internally used private structures.

• Performs any other device-specific initialization.

Parameters
index Specifies the index of this screen in the array of screens for the X Server.

pScreen Specifies a pointer to the screen structure.

argc Specifies the number of options in the argv list.

argv Specifies an array of options that were passed to the X Server at its
invocation.

Return Values
True xxxScrInit succeeded

False xxxScrInit failed.

xxxCloseScreen

Purpose
Closes the screen during X Server reset.
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Syntax
Bool pScreen–>CloseScreen (scrnNum, pScreen, argc, argv)
int scrnNum;
ScreenPtr pScreen;
int argc;
char **argv;

Description
The xxxCloseScreen subroutine is a device-dependent routine that must be provided by
the driver implementor. This subroutine is called for each initialized screen when the server
is reset or closed down.

The xxxCloseScreen subroutine should free any privately allocated structures. If
dynamically allocated space is not freed, the driver will cause the X server to leak memory
across server resets. In addition, a process similar to that outlined in the xxxScrInit
subroutine must be followed to relinquish access to the adapter.

Whereas in the xxxScrinit routine the MAKE_GP subfunction of the aixgsc system call was
called to gain access to the adapter, the UNMAKE_GP subfunction of aixgsc must be
called in the xxxCloseScreen routine to relinquish access to the adapter. Failure to do so
will prevent the success of subsequent aixgsc MAKE_GP calls in xxxScrInit if the server is
resetting and not actually terminating.

Parameters
scrnNum Number of screen

pScreen Specifies the screen to be closed.

argc Number of command line parameters

argv Command line argument vector

Server Termination
Each implementation of the X server must provide two routines that terminate the X server.
The ddxGiveUp subroutine is called when the X server terminates normally. The abortDDX
subroutine is called when the X server encounters an unrecoverable error. Both of these
subroutines close the screen for each active screen of the display. There is no change in
either subroutine.

Adapter Access and the aixgsc System Call
Because the X server is a user process, special considerations have to be taken to ensure
that the DDX is able to access the adapter. This is done through the aixgsc system call with
the MAKE_GP parameter.

The MAKE_GP parameter marks the calling process as a graphics process for the specified
adapter and returns a segment base address of the adapter and a device-specific structure
that should contain device-specific offset addresses. The device-specific structure may also
contain additional information.

The device-specific portion of the information returned by the aixgsc system call is actually
set in the low-level device driver make_gp routine. This is a hardware-specific function that
is a member of the phys_display structure. (See “Display Device Driver” on page 11-14.)
This make_gp routine fills in addresses and other information required by the DDX.
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Once the make_gp routine of the display device driver has been properly implemented, the
aixgsc system call will return the correct addresses within the loadable DDX module. This
enables the X server to access the graphics adapter.

Implementation Details
The aixgsc system call takes a pointer to the following structure (defined in
/usr/sys/include/aixgsc.h) as an argument:

typedef struct _make_gp  {
    int        error;        /* error report */
    caddr_t    segment;      /* segment base address */
    genericPtr pData;        /* device specific adapter addresses */
    int        length;       /* length of device specific data */
    int        access;       /* access authority */
#   define SHARE_ACCESS 0     /* process shares access to adapter */
#   define EXCLUSIVE_ACCESS 1 /* process cannot share access */
} make_gp;

The following is a sample make_gp routine for a display device driver:

static long xxx_make_gp(pdev,pproc,map,len,trace)
gscDev *pdev;
rcmProcPtr pproc;
struct xxx_map *map
int len;
int *trace;
{
   struct ddsent * dds;

   /* This routine fills in the register mappings for this instance */
   /* returns to the gsc call.                                      */

   dds = (struct ddsent *) pdev–>devHead.display–>odmdds;
   map–>io_addr = dds–>io_bus_addr_start;
   map–>cp_addr = dds–>io_bus_mem_start;
   map–>vr_addr = dds–>vram_start;
   map–>dma_addr[0] = dds–>dma_range_start;
   map–>screen_height_mm = dds–>screen_height_mm;
   map–>screen_wdith_mm = dds–>screen_width_mm;
   return(0);
}

With the above make_gp routine, the following is a typical fragment of code to bind the
graphics adapter load module into the GAI architecture and allow access to the adapter
within the xxx_ScrInit:
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#include <gai/gai.h>
#include <gai/misc.h>
#include <sys/rcm_win.h>
#include <sys/aixgsc.h>
#include <sys/rcmioctl.h>
#include <aixPrivates.h>
extern gAdapterPtr gaiDevAdpIndex[MAXSCREENS];
gsc_handle gscHandle;
Bool xxxScrInit(int index, ScreenPtr pScreen, int argc, char **argv)
{
   gAdapterPtr pAdapter = NULL;
   make_gp makegp_info;
   struct xxx_map xxx_makegp_info;    /* see RCM  */
                                      /* documentation */
   int count = 0;
   char *cmdlist[1] = {(char *) NULL};
   strcpy (gscHandle.devname, aixScreenName(pScreen));
   if (ioctl (aixScreenFD(pScreen), GSC_HANDLE, &gscHandle) < 0) {
   return (FALSE);
   }
   pAdapter = CreateAdapter (aixDeviceID(pScreen),
                gscHandle.handle, count, cmdlist);
   makegp_info.error = 0;
   makegp_info.pData = (char *) &xxx_makegp_info;
   makegp_info.length = sizeof(struct xxx_map);
   makegp_info.access = EXCLUSIVE_ACCESS;
                                      /* not a direct access device */
   if (aixgsc(gscHandle.handle, MAKE_GP, &makegp_info)) {
              return (FALSE);
   }
   vram_bits = makegp_info.segment +
               ((struct xxx_map *) makegp_info.pData)–>vr_addr;
   /* continue with remainder of adapter initialization ,
        return TRUE on success, FALSE otherwise.  */
}

Minimum Resource Management Subsystem (RMS) for 2D
Adapters

The Resource Management Subsystem (RMS) is responsible for managing resources
common to different rendering models. These resources include cursors, color palettes,
buffers, client clip information, fonts, window geometries, and so on. It is not necessary to
provide full-function RMS support for an adapter that supports only the X rendering model,
as X handles its own resources.

In order to provide the minimal RMS support required by the Graphics Adapter Interface
(GAI) architecture, the 2D graphic adapter load module must call the RMS CreateAdapter
function in the adapter initialization subroutine and the RMS DestroyAdapter function in the
adapter uninitialize or destroy subroutine.

Implementation
Adapters that are not direct access adapters and will never be direct access adapters can
write an abbreviated version of the Resource Management Support. The following calls
must be made by a 2D adapter that is intended to display any of the SOFT 3D APIs, such
as OpenGL or SoftPHIGS. Otherwise, these calls are recommended, but not required.



11-46 AIX Version 4.1 Writing a Device Driver

CreateAdapter This routine is the basic initialization routine of the GAI RMS library. It
provides the necessary initialization to create a graphics process within
the RCM (Rendering Context Manager) and permits the graphics
process to begin configuration and operation. The routine is typically
called in the ddx specific adapter initialization routine.

DestroyAdapter This routine destroys all data structures allocated for the adapter and
conveys information to the RCM that invalidates the graphics process’
adapter access privileges. This routine is typically called in the ddx
specific routine vectored through when the X server terminates or resets.

Adapters that use the minimal RMS will not physically have an RMS load module and will
store the value NORMS in the rms ODM entry.

The calling sequence for the CreateAdapter and DestroyAdapter functions are as follows:

gAdapterPtr CreateAdapter(int aid, GSC_HANDLE gsc_handle, int
argc, char** argv);

The CreateAdapter function is called from the xxxScrInit subroutine.

pAdapter–>pProc–>DestroyAdapter(pAdapter);    /* pAdapter is */
      /* the adapter pointer returned from CreateAdapter */

The DestroyAdapter function is typically called from the xxxCloseScreen routine.

Include Files
In addition to the standard X server include files, the compilation units (c source files) which
contain the implementation of the device dependent initialization and uninitialization routines
must include the following header files:

• <sys/rcm_win.h>
• <gai/gai.h>
• <gai/misc.h>
• <sys/aixgsc.h>
• <sys/rcmioctl.h>
• <X11/ext/aixPrivates.h>

These header files resolve type definitions for GAI specific data types and external function
declarations for GAI-specific functions used by 2D graphics adapter load modules and input
adapter load modules. In addition, they make available the use of the AIX Graphics System
Call (aixgsc). At initialization time, an aixgsc call must be made to the device independent
portion of the RCM to register the process (in the case of a 2D graphics adapter ddx module
bound with the X server, the X process) as a graphics process.

Configuring the 2D Adapter into the ODM Database
Information about where loadable modules exist is stored in the ODM  database. These
records are located in the GAI class of the database in /usr/lib/objrepos. At load time, this
database is queried based on a unique adapter ID for the correct modules to load. There
are two entries that are required for 2D graphics adapters: one for the RMS module and one
for the DDX module.

Since it is not necessary to provide full-function RMS support for 2D adapters (see previous
section), a special keyword ”NORMS” has been developed to provide the minimal level of
RMS support; ”NORMS”  should be placed in the Module_Path field of the ODM entry.

The following is the structure definition for the GAI record in the ODM database:
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ODM Record

class GAI {
 long Adapter_Id;
 char Module_Key[11];
 vchar Module_Path[256];
 vchar Processor_Id[16];
};

Field definitions for the GAI record in the ODM database.

Adapter_id Specifies the GAI adapter ID for the adapter. New adapters are assigned
this value during development. This is obtained from the display_id attribute
of the ODM PdDv Object Class and stored in the dev_id field of the
appropriate display_rec structure when the server initializes.

The ID is given a value of the form 0x04xxmmnn, where:

04 Fixed.
xx An adapter-specific ID.
0x00 – 0x7f Reserved for IBM use.
0x80 – 0xff Provided for vendor adapters.

Note: To avoid duplication of adapter IDs within this range, it is advised
that you contact IBM for a list of available IDs and not rely on using
values not currently installed in the database.

mm Specifies the adapter state for vendor adapters. 0x00
indicates that the adapter is functional. No other value is
allowed at this time.

nn Differentiates between multiple instances of the same
adapter type (max 4).

Module_Key Specifies the key for the module. Typically, this key is “rms”, “ddx” or one of
the 3D or extension keys.

Module_Path Specifies the path name of the load module for this key and adapter. The
module path is used along with the GAI_PATH environment variable to find
the load module.

Processor_Id Identifies the processor. Intended for future use to enable the developer to
load modules based on processor type. Currently, the only supported value
of this field is 0 (zero), the default, defined as ANY_PROCESSOR.

Usually, ODM records are gathered in a file to be added at configuration time. For example,
a samp2d.add file for an adapter with an ID of 0x4330000 may contain the following
records:

GAI:
Adapter_Id = 0x4330000
Module_Key = ”rms”
Module_Path = ”NORMS”
Processor_Id = 0

GAI:
Adapter_Id = 0x4330000
Module_Key = ”ddx”
Module_Path = ”sampddx/loadddx”
Processor_Id = 0
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Porting Input Devices
This section describes how to add a new input device to the X Server using the X11 Input
Extensions. It consists of the following areas:

• Input Device Driver Overview (on page 11-48)
• Block and Wakeup Handling (on page 11-51)
• Event Processing (on page 11-53)
• Input Load Module (on page 11-54)
• ODM Database Entry for Input Devices (on page 11-60)
• Sample Input Device Load Module (on page 11-61)

Input Device Driver Overview
The AIX system supports only keyboards and displays as part of the low-function Terminal
(LFT) subsystem. Typically, the X server uses the mouse as its core pointer, but it could
also be a tablet or other device that has a valuator with at least two axes and one pointer.
Devices with valuators of two or more axes are supported on the system as extension input
devices. The AIX system provides built-in load modules for supported extension input
devices. Unsupported input devices require their own load modules.

The X server accesses extension input devices through the X11 Input Extension. This
information describes adding a new input device to the AIXwindows X server. You must
understand how the X11 Input Extension works before trying to port a new input device.
This information should be used with the X11 Input Extension Porting document from the X
Consortium.

The three requirements for adding a new extension input device to the AIXwindows X server
are:

• A device driver (or standard tty device driver)

• A load module that contains the device-dependent subroutines for accessing the
extension input device

• Entries in the Object Data Manager (ODM) database.

Device Driver
The device driver is the interface between the X server and the extension input device
hardware. If the extension input device can use the serial port, you may want to use the
standard tty device driver rather than write a device driver. The requirements for the device
driver vary, depending upon whether you want to use the X server input ring. If you use the
standard tty device driver, you may need to maintain your own input ring. For information on
using the tty device driver, see Chapter 10 “STREAMS-Based TTY Subsystem Interface.”

To use the X Server input ring to store events, follow the specification for adding events to
the input ring. The device driver must send a signal to the X server to notify it that there is
input pending. The load module for the extension input device is responsible for sending the
input ring information of the X server to the device driver. The deviceProc subroutine must
initialize the inputInfoDevPriv structure for the extension input device.

If you do not want to use the X server input ring, then the load module and the device driver
must coordinate how and where input device events are to be stored. The load module must
register with the X server the two values it will use to check for input pending. The module
must also determine the subroutine to call if input is available. This can be done using
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AddInputCheck subroutine. You will need to follow this method if you plan on using the
standard tty device driver. You must also register a block handler and a wakeup handler.

InputInfo Structure
The InputInfo structure, defined in the /usr/include/X11/ext/inputstr.h file, contains
information about the input devices. The inputInfo global variable must be used to access
the elements of the structure.

The InputInfo structure is defined as follows:

typedef struct {
  int            numDevices;  /* total number of devices      */
  DeviceIntPtr   devices;     /* all devices turned on        */
  DeviceIntPtr   off_devices; /* all devices turned off       */
  DeviceIntPtr   keyboard;    /* fast path to keyboard device */
  DeviceintPtr   pointer      /* fast pointer to the pointer  */
                              /* device                       */
#ifdef AIXV4
  inputInfoDevPriv infoPriv;  /* the global input specific    */
                              /* control block                */
#endif
} InputInfo;

The fields of the InputInfo structure are defined as follows:

numDevices Specifies the number of devices that are known to the X server.

devices Specifies a pointer to a linked list of device structures that represent
devices that are turned on.

off_devices Specifies a pointer to a linked list of device structures that represent
devices that are turned off.

keyboard Specifies a pointer that is a fast path to the core keyboard structure.

pointer Specifies a pointer that is a fast path to the core pointer structure.

infoPriv Specifies a pointer to the private structure for the input control blocks.

inputInfoDevPriv Structure
The InputInfo structure contains a private area that is used for input control blocks. The
following structure is used as the InputInfo private area. The MAX_DEVICES variable is
defined in the inputstr.h file. Use the infoInput global variable to access this structure. The
devices and eventHandlers elements must be set in the deviceProc subroutine if the X
server input ring is to be used to store the device events.

struct _inputInfoDevPrev {
      struct  inputring      *inputRing;
      struct  DeviceIntRec   *devices [MAX_DEVICES] ;
      void                   (*eventHandlers [MAX_DEVICES]) () ;
} inputInfoDevPriv,  *inputInfoDevPrivPtr;

#define INPUT_RING_SIZE 4096

The fields of the inputInfoDevPriv structure include are defined as follows:

inputRing Specifies a pointer to the input ring where the input devices store events.
The inputring structure is defined in system include file
/usr/include/sys/inputdd.h.

devices Specifies an array of pointers to the DeviceIntRec structure for each
device and serves as a fast path to the structures for each device. The
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index into the array is the device ID stored in the DeviceIntRec structure
for the extension input device.

eventHandlers
Specifies an array of subroutines (one for each possible device) that format
the raw event as read from the input ring into the proper X server format.
The index into the array is the device ID stored in the DeviceIntRec
structure for the extension input device.

inputring and ir_report Structures
The inputring and ir_report structures are defined in the inputdd.h include file. Refer to
the inputdd.h file for details of the structure. The first 10 bytes in each ir_report structure
contain the ID of the device returning the event, the size of the event, and a time stamp.
The Input Ring Structure figure depicts the location of this data within the context of the
input ring.

X Server Input Ring
Once a device has been opened, extension input device drivers can add events to the X
server input queue. The input ring is allocated in X server memory and is stored as part of
the device private area of the input control block in the inputInfo structure. To use the input
queue, the deviceProc subroutine for each extension input device must register the input
ring data with the device driver. This data is the pointer to the inputring structure and the
device ID. The device ID for each device is the id field of its DeviceIntRec.

The following diagram illustrates the X Server input ring:
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All input devices that receive input events from device drivers by this mechanism share the
input ring. The input queue contains a head and tail pointer. The device driver adds device
events to the ring at the tail pointer, and the X server reads events from the ring at the head
pointer. The header of each raw device event contains a device ID, the size of the event
data, and a timestamp in milliseconds. The offset to the next event is computed  from size
value. The locking strategy uses priority levels to ensure that only one input driver touches
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the input ring at any given time. Thus, all input device drivers must execute with an
INTCLASS3 priority whenever they modify the input ring.

When the queue head pointer is equal to the tail pointer, it is assumed that the queue is
empty. When the device driver attempts to add an event that would cause the tail pointer to
be equal to or logically greater than the head pointer, it sets the ir_overflow flag and
flushes the input event that caused the overflow. Additionally, all events are flushed as long
as the ir_overflow flag in the ring header is set to IROVERFLOW, even if there is room on
the ring for an event report.

Data stored in the input ring are in the form of raw device events, but they must be
reformatted into the type of event that the X server returns to the client. The events may be
core device events (those originating from a pointer or keyboard) or extension device
events, such as valuator motion, button press, button release, key press, key release or
proximity. Since the X server may not have knowledge of every raw device event format
stored in the queue, it calls a device-specific subroutine to reformat the event into one of the
event types that the X server understands. These subroutines are stored in the input device
private structure in the processRawInputEvents field.

A fast path to each of the extension input device’s processRawInputEvents is the
eventHandlers array stored in the private area of the inputInfo structure. When the device
is opened, the deviceProc subroutine stores a pointer to the device’s
processRawInputEvents subroutine in the eventHandlers index that corresponds to the
device’s ID as stored in the id field of the deviceIntRec structure. The
processRawDeviceEvents formats the event into the appropriate X events and calls the
subroutine stored in the processInputEvents field of the DeviceIntRec for the extension
input device.

SIGMSG Signal
Input device drivers using the AIX input event queue provide event notification to the X
server using the SIGMSG signal. The SIGMSG signal is defined in the
/usr/include/sys/signal.h file. The ir_notifyreq flag in the input ring header specifies when
the SIGMSG signal is to be sent. If the flag is set to IRSIGEMPTY, the driver sends a signal
only when it enqueues an event report into an empty input ring. If the ir_notifyreq flag is set
to IRSIGALWAYS, then the device driver sends a SIGMSG signal each time it enqueues an
event.

Notification is provided for the event that causes a queue overflow; however, once queue
overflow has been posted to the input ring, no other event notification is provided until the
overflow indicator has been cleared. Queue overflow is posted to the input ring when the
ir_overflow flag is set to IROVERFLOW.

If the input device to be added connects to the system through a tty port, a block and
wakeup handling scheme must be used. See “Block and Wakeup Handling” for more
information.

Block and Wakeup Handling
If you use the standard tty device driver, you must notify the X server to enable the
extension input device driver for input pending. This can be accomplished by calling the
AddEnabledDevice subroutine, which adds the file descriptor for the device driver to the
select mask. To remove the file descriptor for the device driver from the select mask, use
the RemoveEnabledDevice subroutine. Both subroutines should be called in the
deviceProc subroutine for the extension input device when the extension input device is
turned on or off. The xxxBlockHandler and xxxWakeupHandler subroutines must be
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registered with the X Server by calling the RegisterBlockAndWakeupHandlers subroutine
to control what the X Server should do before and after calling the select subroutine.

Note: You must replace the xxx portion of the subroutine name to make it unique.

The xxxBlockHandler and xxxWakeupHandler subroutines are removed by calling
RemoveBlockAndWakeupHandlers when the extension input device is turned off in a
deviceProc subroutine of the device.

The AddEnabledDevice, RemoveEnabledDevice  and
RemoveBlockAndWakeupHandlers subroutines are common X Server routines. For more
information about these subroutines, refer to The X-Window Server by Elias Israel and Erik
Fortune, Digital Press.

Additional information about the xxxBlockHandler and xxxWakeupHandler subroutines
follows.

xxxBlockHandler Subroutine

Purpose
Allows for any device-specific action before the select subroutine is processed.

Syntax
void xxxBlockHandler (blockData, ppT imeout, pReadmask)
char *blockData;
struct timeval **ppT imeout;
unsigned *pReadmask;

Description
The xxxBlockHandler subroutine allows for any device-specific action before the X server
processes the select subroutine. The xxxBlockHandler subroutine is called before the X
server calls the select subroutine. For most extension devices, this subroutine is an empty
routine. You must register block and wakeup handlers in pairs, and in most cases, only a
wakeup handler is needed for input devices.

Parameters
blockData Points to the private data used by the block handler subroutine. Its value is

the same as the value of the blockData parameter that was passed to the
RegisterBlockAndWakeupHandlers subroutine.

ppT imeout Returns a pointer to the timeout value. This value is used to determine the
maximum amount of time the block is allowed to last.

pReadmask Points to a data structure that defines which descriptors are to be blocked
on. The data structure is an array of unsigned long data elements, and the
bit in the arrary must be set so that it corresponds to the value of the file
descriptor.

xxxWakeupHandler Subroutine

Purpose
Allows for reading from ready file descriptors after select processing.

Syntax
#define FD_SETSIZE 128 /* limit of server connections */
#include <sys/select.h>
void xxxWakeupHandler (result, pReadmask)
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int result;
unsigned *pReadmask;

Description
The xxxWakeupHandler subroutine is called after the X server returns from the select
subroutine. If the descriptor for the extension input device driver is ready for reading, the
two long values that check for input should be set not equal to each other.

The macro FD_ISSET(n, pReadMask) checks the file descriptor that you are using to see if
the select subroutine selected your ID.

Parameters
result Indicates the return value from the select subroutine that specifies the

number of descriptors that are ready for reading.

pReadMask Points to a data structure that defines which descriptors are ready for
reading.

Event Processing
Processing events involves obtaining events from devices and delivering them to clients. If
the X server input ring is used, each device event in the input ring is passed to the
eventHandlers subroutine, which was initialized in the inputInfoDevPriv structure.
Otherwise, the input processing subroutine passed to the AddInputCheck subroutine will
be called to process pending input. Both of these methods should use the
processRawEvents subroutine, which is part of the load module.

AddInputCheck Subroutine

Purpose
Adds additional input checking for extension input devices that are not using the X server
input ring.

Syntax
void AddInputCheck (p1, p2, proc)
void *p1, *p2;
void *proc ();

Description
The AddInputCheck subroutine adds extra input checking for extension input devices that
do not use the X server input ring. The AddInputCheck subroutine adds a level of
indirection to the current scheme of checking for input by comparing of two long data
elements. Instead of one set of long data elements to check for pending input, there is an
array of longs. The AddInputCheck subroutine adds a new set of long data elements as
well as an input processing procedure into this array.Two identical values indicates no input
whereas two different values indicates input is pending. The long values can be pointers or
hard-coded values.

Parameters
p1, p2 Specifies a pointer to a long data element. The values can be a mask, a

hard coded value, an integer, or a pointer.

proc Specifies a procedure to call if the values pointed to by the p1 and p2
parameters are not equal.
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RemoveInputCheck Subroutine
Cancels the AddInputCheck subroutine.

Syntax
void RemoveInputCheck (proc)
void *proc ();

Description
The RemoveInputCheck subroutine removes additional input checking for extension input
devices that do not use the X server input ring. This subroutine is called when the
deviceProc subroutine of the device contains the DEVICE_OFF value.

Parameters
proc Specifies the procedure that corresponds to the input check that should be

removed.

Input Load Module
The subroutines that manipulate each extension input device are stored in a dynamically
loadable module. When the X server receives an X_ListInputDevices protocol request, it
loads each of the extension load modules and calls the entry point for each load module.
Load modules remain loaded until the X server terminates or resets.

InputDevPrivate structure
The InputDevPrivate structure must be initialized in the entry point subroutine of the
extension input device load module. This structure is part of the
/usr/include/X11/ext/aixInput.h file and is defined as follows:

typedef struct {
    pointer  client_list;
    short    ctrlstructsize;
    int      (*legalModifier) ();
    int      (*deviceProc) ();
    int      (*openDevice) ();
    void     (*closeDevice) ();
    int      (*setDeviceMode) ();
    int      (*setDeviceValuators) ();
    int      (*getDeviceControl) ();
    int      (*changeDeviceControl) ();
    void     (*processRawInputEvents) ();
    int      fd;
    int      idx;
    pointer  vendor_specific;
} InputDevPrivate;

Field definitions for the InputDevPrivate structure:

client_list Specifies a linked list of all the clients that have this device open. This
element must be initialized to NULL.

ctrlstructsize
Specifies the size of the device control structure that this device accepts.
This field is used in the ChangeDeviceControl protocol. If the extension
input device does not support changing controls, this element must be set
to 0.
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legalModifier
Specifies a pointer to a subroutine that is used for devices that have keys.
This field returns True or False if the key passed as an input parameter can
be used as a modifier key. If the extension input device does not use a
modifier key, this element must be set to False.

deviceProc Specifies a pointer to the deviceProc subroutine. The deviceProc
subroutine initializes the device, turns the device on and off, and closes it.

openDevice Specifies a pointer to the subroutine to call when the OpenDevice protocol
is specified.The initial value of this field is NoopDDA().

closeDevice Specifies a pointer to the subroutine to call when the CloseDevice protocol
is specified.The initial value of this field is NoopDDA().

setDeviceMode
Specifies a pointer to the subroutine to call when the SetDeviceMode
protocol is specified. If the extension input device does not support mode
changing, this element must be set to NULL.

setDeviceValuators
Specifies a pointer to a subroutine to call when the SetDeviceValuators
protocol is specified. If the extension input device does not support
valuators or initializing of valuators, this element must be set to NULL.

getDeviceControl
Specifies a pointer to a subroutine to obtain the current device control
setting for the device. If the extension input device does not support
querying of device controls, this element must be set to NULL.

changeDeviceControl
Specifies a pointer to a subroutine to set the device control settings for a
device. If the extension input device does not support changing device
controls, this element must be set to NULL.

processRawInputEvents
Specifies an input subroutine that formats the raw events extracted from
the input ring.

fd Specifies the file descriptor of the extension input device.

idx Specifies an index to device-specific information. Do not initialize this field.

vendor_specific
Specifies a pointer to any vendor private data used in the load module of
the extension input device.

ExtInitInput Subroutine

Purpose
Initializes the input private structure for the extension input device.

Syntax
int ExtInitInput (inputDevPrivate)
InputDevPrivate *inputDevPrivate;

Parameters
inputDevPrivateSpecifies a pointer to an empty input device private structure and returns an

initialized structure.
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Description
The ExtInitInput subroutine for the extension input device initializes the devPrivate
structure of the deviceIntRec structure. The ExtInitInput subroutine is the entry to the load
module and is returned from the load system call.

Return Values
0 Indicates successful completion.

1 Indicates an error occurred.

deviceProc Subroutine

Purpose
Initializes, turns on, opens, or closes the extension input device.

Syntax
int xxxdeviceProc (pDev, onoff)
DevicePtr pDev;
int onoff;

Description
The deviceProc subroutine is a device-specific procedure that is called from the
EnableDevice, DisableDevice, InitAndStartDevices, CloseDevice, and ExtInitInput
subroutines. This subroutine performs the function specified by the onoff parameter for the
device specified by the pDev parameter.

Typical actions that occur during device initialization include setting up device private
information and calling the dix subroutines to initialize device-specific information. These
subroutines include InitializePointerDeviceStruct and InitializeKeyboardDeviceStruct to
initialize the pointer and keyboard. The deviceProc subroutine must initialize extensions,
device class structures, and the global state of the device. The extension class device
structures are created by using the following subroutines:

• InitButtonClassDeviceStruct
• InitKeyClassDeviceStruct
• InitValuatorClassDeviceStruct
• InitValuatorAxisClassDeviceStruct
• InitFocusClassDeviceStruct
• InitProximityClassDeviceStruct
• InitKbdFeedbackClassDeviceStruct
• InitPtrFeedbackClassDeviceStruct

The MakeAtom subroutine is called with the name of the device. The
AssignTypeAndName subroutine is called with the device ID and the atom returned from
the MakeAtom subroutine. These subroutines set the device name and type in the device
structure.

The deviceProc subroutine must initialize the default values for global state in the
devPrivate section of the DeviceIntRec structure for the specified device.

Parameters
pDev Specifies a pointer to the structure that devices the device

onoff Specifies the action to be taken. Valid values for onoff are:

DEVICE_INIT Creates structures.
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DEVICE_ON Opens the hardware device driver if one exists. The device
is marked as on and calls the AddEnabledDevice
subroutine. Other OS-specific actions occur to make the
device available. Typically, the deviceProc subroutine calls
the AddEnabledDevice subroutine to add the device to
the list of “on” devices and the on field of the device
structure is set to True.

If an extension device does not receive its events from
input ring, then the AddInputCheck and
RegisterBlockAndWakeupHandlers subroutines are
called to set up the input checking and processing
mechanism for the extension device.

DEVICE_OFF Marks the device off. Typically, deviceProc calls the
RemoveEnabledDevice subroutine to delete the device
from the list of “on” devices and adds the device to the list
of initialized devices. The on field of the device structure is
set to False.

If the RegisterBlockAndWakeupHandlers subroutine was
called during the DEVICE_ON state, the
RemoveBlockAndWakeupHandler subroutine turns off
the block and wakeup handlers for the device.

DEVICE_CLOSE
If the AddInputCheck subroutine was called during the
DEVICE_ON stage, the RemoveInputCheck subroutine
turns off input checking and processing for the extension
input device in the server.

Return Values
0 Indicates successful completion.

1 Indicates an error occurred.

setDeviceMode Subroutine

Purpose
Sets the mode of a device.

Syntax
int xxxsetDeviceMode (pDev, client, mode)
DeviceIntPtr pDev;
ClientPtr client;
int mode;

Description
The setDeviceMode subroutine sets the mode of the device to the mode passed as an
input parameter. This mode can be Absolute or Relative.

Parameters
pDev Specifies the device

client Specifies the client opening the input device

mode Specifies the mode. Valid values are Absolute or Relative.
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Return Values
BadDevice Indicates an invalid device ID.

BadMatch Indicates the device does not support modes.

BadMode Indicates the specified mode is invalid.

DeviceBusy Indicates another client is using this device.

setDeviceValuators Subroutine

Purpose
Initializes the valuators on a device.

Syntax
int xxxsetDeviceValuators (pDev, client, valuators, first_valuator, num_valuators)
DeviceIntPtr pDev;
ClientPtr pClient;
int *valuators;
int first_valuator;
int num_valuators;

Description
The setDeviceValuators subroutine initializes one or more of the valuators of the device to
the values passed in the valuators parameter.

Parameters
pClient Specifies the client setting the valuators the input device.

pDev Specifies the device.

valuators Specifies an array of valuator values to be set.

first_valuator Specifies the index of the first valuator to be set.

num_valuators Specifies the number of valuators to be set.

Return Values
Success

BadMatch Indicates the device does not permit valuators to be set.

BadValue Indicates an invalid value for the valuator was specified.

BadDevice Indicates an invalid device ID was specified.

getDeviceControl Subroutine

Purpose
Returns the current device control setting for the specified device.

Syntax
int xxxgetDeviceControl (pClient, pDev, control)
ClientPtr client
DevicePtr pDev;
xDeviceCtl *control;
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Description
The getDeviceControlProc subroutine for each device obtains the specified controls for
the device. The xDeviceControl structure is passed directly to the client. The client must
link third-party vendor code and initialize the appropriate subroutines to interpret the data.

Parameters
pClient Specifies the client that is requesting the control change.

pDev Specifies a pointer to the device.

control Specifies the control to obtain.

Return Values
Success

BadValue Indicates the X server does not support specified control

BadMatch Indicates the X server supports specified control, but the device does not.

AlreadyGrabbed
Indicates the device was grabbed by another client.

changeDeviceControl Subroutine

Purpose
Changes the device control settings for the specified device.

Syntax
int xxxchangeDeviceControl (pDev, control)
DevicePtr pDev;
xDeviceCtl *control;

Description
The control procedure for each device changes the specified controls.

Parameters
pDev Specifies a pointer to the device.

control Specifies the change to the device control.

Return Values
Success

Failure

processRawInputEvents Subroutine

Purpose
Formats a raw device event into an event that can be sent to an X Client.

Syntax
void xxxprocessRawInputEvents (pDev, rawEvents)
DeviceIntRecPtr pDev;
pointer *rawEvent;
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Description
The processRawInputEvents subroutine takes the raw device event as retrieved from the
input queue or input device and formats it into an event that can be sent to an X client.

In order to map raw device event into X event, information about the current screen and
cursor position is needed. This type of information is accessible globally as follows:

extern int DeviceButtonPress, DeviceButtonRelease; 

/* extension device event types */ 
extern int DeviceMotionNotify, DeviceValuator; 

/* extension device event types */ 
extern int ProximityIn, ProximityOut; 

/* extension device event types */ 
extern int lastEventTime; 
extern ScreenInfo screenInfo; /* screen information */
extern int aixCurrentScreen; /* current screen number */
extern InputInfo inputInfo; /* global InputInfo,

   defined in dix/devices.c */ 
extern int AIXCurrentX; /* current X position of cursor */ 
extern int AIXCurrentY; /* current Y position of cursor */
extern long GetTimeInMillis(); /* function to get current time */

Parameters
pDev Specifies a pointer to the DeviceIntRec structure for the device.

rawEvent Specifies a pointer to the raw device event for the device.

ODM Database Entry for Input Devices
Information about each input device is stored in the ODM (Object Data Manager) database.
The following information will be stored for each device.

XINPUT {
  char  DeviceName[64];         /* VENDOR’S NAME FOR DEVICE   */
  vchar ModuleName[MAXPATHLEN]  /* PATH NAME TO LOAD MOCULE   */
  char  GenericName[15];        /* ONE OF 18 GENERIC DEVICES  */
  vchar Class[16];              /* PdDv CLASS                 */
  vchar SubClass;
  vchar connwhere;
};

The fields of the XINPUT ODM record structure are defined as follows:

DeviceName Specifies a vendor specific name for the device.

ModuleName Specifies the relative name of the load module. This name is used in
conjunction with the XINPUTPATH environment variable to find the name of
the XINPUT load module. The default path is set to: /usr/lpp/X11/lib/load.

GenericName Specifies the name of the device as used in name field of the deviceIntRec
structure. There are 18 predefined names defined in the XI.h include file.
Vendors are encouraged to use these names for interoperability.

Class Same as the class name in the device driver CuDv record.

SubClass Reserved for future use.

connwhere Reserved for future use.
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ODM Input Device Record Example
The .add file for the IBM input devices will contain the information for the input device. For
instance, the keyboard device will have the following record:

XINPUT:
DeviceName = “Keyboard Device”
GenericName= “KEYBOARD”
ModuleName = ”loadkeyboard”
Class      = “Keyboard”

Sample Input Device Load Module
A sample Input Device load module is included in the AIX Version 4.1 distribution and is
located in the directory /usr/lpp/X11/Xamples/extensions/server/load.

If this directory is not on your system, you may have not loaded the X11.samples.ext LPP.
To see if this is on your system execute:

lslpp –h | grep samples.ext
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Building a Dynamically Loadable Module
The figure shows how dynamically loadable modules are built.

X Server

Symbols Exported When Built
     xxxx
     yyyyy
     zzzz

Load Module
    Uses xxxx, yyyy, zzzz

Imported Symbols
at build time

Build of Dynamically Loadable Modules

To build a dynamically loadable module, the loading module and the loaded module must
cooperate. The loading module must export a list of symbols that will be needed by the
loadable module. The loadable module must import the symbols needed from the loading
module. These symbols are resolved at the time of the load system call. In addition, each
dynamically loadable module must provide the name of a subroutine to be used as the entry
point to this module.

AIX provides the following exports files that can be used by a dynamically loadable module
as import files:

X.exp Contains symbols from the device independent (dix) portion of the X server.

Xi.exp Contains symbols from the device independent portion of the X11 Input
Extension.

The following example is a sample makefile used to build a dynamically loadable module.
This module imports symbols from X.exp and Xi.exp. The ExtInitInput subroutine is used
as the entry point to this module:

# Makefile for creating loadable object module

# specify entry point
EPNT = SampExtInit

# import files
IMPS = –bI:/usr/lpp/X11/bin/X.exp\

–bI:/usr/lpp/X11/bin/Xi.exp

# include file directories
INCS = –I/urs/include/X11          \

–I/usr/include/X11/ext      \
–I/usr/include/X11/extensions

sample:
cc SampExt.c –o LoadSampExt –e${EPNT} ${INCS} ${IMPS}

–bM:SRE
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Debugging Load Modules
Remember that symbols defined in the load module are not available to the debugger until
the load module is loaded into memory. So, in order to set a breakpoint inside a function
defined in the load module, you have to wait until the module is loaded. To do this:

• Get into the debugger (dbx /usr/lpp/X11/bin/X) and issue a set subcommand. This will
list all the variables defined in the debug environment.

• Use the unset subcommand to unset the variable $ignoreload:

unset $ignoreload

• Issue the run subcommand at the debug prompt:

run –Pll dev_name

where dev_name is the index of the device you want to debug from the lsdisp command
(for example, ppr0). The process of loading and unloading generates signals which the
debugger catches and pauses. At this time you set the breakpoint.

As an example, say that there are two displays on the system:

>lsdisp
DEV SLOT BUS APT_NAME DESCRIPTION
ppr0 00–01 mca POWER_G4 Midrange Graphics Adapter
gda0 00–03 mca colordga Color Graphics Adapter

Get into the debugger:

dbx /usr/lpp/X11/bin/X (user action)
dbx>unset $ignoreload (user action)
dbx>run –P11 gda0 (user action)

At this point the LFT subsystem takes over the cursor and you will see a screen flash on the
vendor display. Type Shift-Action to get the cursor back to the ibmdisp display.

dbx> stopped due to load/unload (system response)
dbx> stop in xyz (user action, xyz() is

the function you want to
break in.)
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List of X Server Porting Subroutines
Load modules for the AIXwindows X server must contain the following subroutines.

X Server Initialization
The following X Consortium subroutines must be included to meet X server requirements.
One instance is required for each server.

ddxProcessArgument
Processes the command-line arguments for the X server.

FindAllAvailableDisplays
Initializes the DisplayRec structure for the X server.

InitOutput Initializes the screeninfo ImageByteOrder, bitmap information, and pixmap
format information and obtains private indexes for the screen and AIX
extensions.

Device-Dependent Initialization
The following subroutines must be supplied to meet ddx requirements:

xxxentryFunc Returns information from the loading of the loadddx module.

xxxScrInit Initializes the screen structure for each screen and performs
device-dependent initialization as required.

xxxCloseScreen
Closes the screen during X server reset.

Block and Wakeup Handling (Input Devices)
Third-party vendors need to write these subroutines for their input extension load modules.

xxxBlockHandler
Allows for any device-specific action before the select subroutine is
processed.

xxxWakeupHandler
Allows for reading from ready file descriptors after select processing.

Event Processing (Input Devices)
The following are provided callable routines for input extension device event processing:

AddInputCheck
Adds additional input checking for extension input devices that are not
using the X server input ring.

RemoveInputCheck
Cancels the AddInputCheck subroutine.

Input Load Module (Input Devices)
The following subroutines must be supplied for input extension load modules:

ExtInitInput Initializes the input private structure for the extension input device.

deviceProc Initializes, turns on, opens, or closes the extension input device.

setDeviceMode
Sets the mode of a device.
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setDeviceValuators
Initializes the valuators on a device.

getDeviceControl
Returns the current device control setting for the specified device.

changeDeviceControl
Changes the device control settings for the specified device.

processRawInputEvents
Formats a raw device event into an event that can be sent to an X client.

Related Information
Angebranndt, Susan, Drewry, Raymond, Karlton, Philip, Newman, Todd, Packard, Keith and
Scheifler, Robert W. Strategies for Porting the X v11 Sample Server. Massachusetts
Institute of Technology. 1991.

Fortune, Erik, and Israel, Elias. The X-Window Server. Digital Press.

Gettys, James, Newman, Ron and Scheifler, Robert W. Xlib––C Language X Interface, MIT
X Consortium Standard, X Version 11, Release 5. MIT X Consortium 1991.

Patrick, Mark, and Sachs, George. X11 Input Extension Library Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

Patrick, Mark, and Sachs, George. X11 Input Extension Protocol Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

Sachs, George. X11 Input Extension Porting Document. MIT X Consortium Standard. X
Version 11, Release 5. Hewlett-Packard Company and the Massachusetts Institute of
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Chapter 12. Implementing a Network Device Driver

A CDLI device driver has several components, as shown in the CDLI Device Driver
Structure figure.

SOCKETS STREAMS

DLPI

NETWORK DEVICE DRIVER

PHYSICAL DEVICE

NETWORK SERVICES

NETWORK DEMUXERS
NID/IFNET

CDLl Device Driver Structure

Several of those components are system-supplied, but a device driver writer typically writes
the following components:

Network Device Driver (NDD)
Defines a simple interface to network based devices that can be used by
both the sockets network interface layer (IFNET) and the STREAMS DLPI
data link layers. (See “Writing a Network Device Driver” on page 12-2.)

Network Demuxer (ND)
Provides common data-link receive functionality. The demuxer specifies
receive filters that are used to distribute network packets. (See “Writing a
Network Demuxer” on page 12-13.)

Network Interface Driver(NID)
The AIX Network Interface Driver (NID) is a layer of software between a
network device driver (NDD) and an AIX network layer. This layer is
required for all network device drivers that have to be made available to a
network layer. (See “Writing a Network Interface Driver” on page 12-22.)
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Writing a Network Device Driver
Network device drivers, including the system provided network device drivers (for example,
Ethernet and Token-Ring), are implemented as loadable kernel extensions in AIX.  The
following general guidelines apply:

• By convention, device driver kernel extensions are installed in the /usr/lib/drivers
directory. Some system utilities may assume that this is the case.

• When building the kernel extension the relevant base system exports must be imported.
The system provided device drivers import the following: kernex.exp, syscalls.exp.
(streams.exp is used by some drivers). The system export files are located in the
/usr/lib directory.

• Device driver writers must decide how much of the kernel extension to pin. The major
consideration is that code executed on the interrupt level should be pinned. In general,
the system provided device drivers are pinned in their entirety.

• Network device drivers must be configured and loaded into the system.

Overview of Network Device Driver Changes in AIX Version 4.1
To accommodate the changes for the CDLI interface that the communications subsystem
now uses, the network device driver’s interfaces in AIX Version 4.1 are different from the
interfaces in AIX Version 3.2 . The parameters passed to the open, close, ioctl and output
functions have been changed. The ioctl function has a new list of commands to service. The
receive interrupt routine is now required to pass up frames via a required interface. There
are also some minor changes to the way a network device driver is loaded and terminated.

Network Device Driver Initialization and Termination
Device driver initialization involves execution of the kernel extension’s configuration entry
point. This function is designated when the network device driver is built and is called by the
system when the device driver is loaded. Usually, the ifconfig command is responsible for
configuring the network device driver. The format of the entry should be as follows:

(*networkdd_config) (int cmd, struct uio *uio)

The entry has the following parameters:

• cmd indicates what type of configuration operation should be performed.  The network
device driver should recognize the following values for cmd (see
/usr/include/sys/device.h) and can define additional device specific commands:

CFG_INIT Initialize the device.

CFG_TERM Terminate the device.

CFG_QVPD Return vital product data.

CFG_UCODE Download microcode.

• uio is a pointer to a uio structure  whose data area contains a ndd_config_t structure
(refer to /usr/include/sys/ndd.h). This ndd_config_t structure contains the
configuration information for the network device driver

When called with the CFG_INIT command the device driver’s configuration function should
perform the following tasks:

• Do any pinning of modules or data structures required by the device driver.

• Do any lock initialization required by the driver.
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• Initialize the device control structures, including allocating memory for the ndd structure.

• Call the ns_attach kernel service to add the device driver to the list of available network
devices.

When called with the CFG_TERM command the device driver’s configuration function
should perform the following tasks:

• Do any unpinning of modules or data structures required by the device driver.

• Free any lock resources.

• Free any device control structures.

• Call the ns_detach kernel service to remove the device driver from the list of available
network devices.

Warning: DLPI or the socket network interface layer may still have references to the device
driver’s ndd structure. This structure should only be deleted from the system when the
device driver is certain that these references have been removed.

When called with the CFG_QVPD command the device driver’s configuration function
should return the devices vital product data in the ndd_config_t structure.

CFG_UCODE is device specific.

The configuration entry point can be called from the process environment only.

Sample network device driver code for configuration and unconfiguration follows:

xx_config(
  int cmd, /* command being processed */
  struct uio *p_uio) /* pointer to uio structure */
{
  xx_dev_ctl_t *p_dev_ctl = NULL; /* point to dev_ctl area */
  int rc = 0; /* return code */
  int i; /* loop index */
  ndd_config_t  ndd_config; /* config information */
  

  /*
   * Use lockl operation to serialize the execution of the config commands.
   */ 
 lockl(&CFG_LOCK, LOCK_SHORT); 
 if (!xx_inited) {

/* perform first time initialization  
 *
 *  set all locks
 *  init device driver structures
 */

  }
  pincode(xx_open); /* pin the entire driver */

  uiomove((caddr_t) &ndd_config, sizeof(ndd_config_t), UIO_WRITE, p_uio);

  /*
   * find the device in the dev_list if it is there 
   */
  p_dev_ctl = xx_dd_ctl.p_dev_list;
  while (p_dev_ctl) {

if (p_dev_ctl–>seq_number == ndd_config.seq_number) 
break;

p_dev_ctl = p_dev_ctl–>next;
  }
  switch(cmd) {

case CFG_INIT:
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if (p_dev_ctl) {
rc = EBUSY;
break;

}
/*
 * Allocate memory for the dev_ctl structure 
 */
p_dev_ctl = xmalloc(sizeof(xx_dev_ctl_t), MEM_ALIGN, 

pinned_heap);

bzero(p_dev_ctl, sizeof(en3com_dev_ctl_t));

/*
 *  Initialize the locks in the dev_ctl area
 */

.....
/*
 * Add the new dev_ctl into the dev_list 
 */
p_dev_ctl–>next = en3com_dd_ctl.p_dev_list;
xx_dd_ctl.p_dev_list = p_dev_ctl;
xx_dd_ctl.num_devs++;
/*
 *  Copy in the dds for config manager
 */
if (copyin(ndd_config.dds, &p_dev_ctl–>dds, 

sizeof(en3com_dds_t))) {
                        rc = EIO;

break;
}
p_dev_ctl–>seq_number = ndd_config.seq_number;
/* save the dev_ctl address in the NDD correlator field */
p_dev_ctl–>ndd.ndd_correlator = (caddr_t)p_dev_ctl;  
p_dev_ctl–>ndd.ndd_addrlen = XX_NADR_LENGTH;
p_dev_ctl–>ndd.ndd_hdrlen = XX_HDR_LEN;
p_dev_ctl–>ndd.ndd_physaddr = WRK.net_addr;
p_dev_ctl–>ndd.ndd_mtu = XX_MAX_MTU;
p_dev_ctl–>ndd.ndd_mintu = XX_MIN_MTU;
p_dev_ctl–>ndd.ndd_type = NDD_ISO???;
p_dev_ctl–>ndd.ndd_flags = NDD_BROADCAST | NDD_SIMPLEX;
p_dev_ctl–>ndd.ndd_open = xx_open;
p_dev_ctl–>ndd.ndd_output = xx_output;
p_dev_ctl–>ndd.ndd_ctl = xx_ctl;
p_dev_ctl–>ndd.ndd_close = xx_close;
p_dev_ctl–>ndd.ndd_specstats = (caddr_t)&(XXSTATS);
p_dev_ctl–>ndd.ndd_speclen = sizeof(XXSTATS);

  /* perform device–specific initialization */
  .....
  /* add the device to the NDD chain */
  if (rc = ns_attach(&p_dev_ctl–>ndd)) {

return(rc);
  }
break;

case CFG_TERM:
/* Does the device exist? */
if (!p_dev_ctl) {

rc = ENODEV;
break;

}

/*
 * Make sure the device is in CLOSED state.
 * Call ns_detach and make sure that it is done
 * without error.
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 */
if (p_dev_ctl–>device_state != CLOSED || ns_detach(&(p_dev_ctl–>ndd))) {

rc = EBUSY;
break;

}
/*
 * Remove the dev_ctl area from the dev_ctl list
 * and free the resources.
 */
break; 

case CFG_QVPD:
/* Does the device exist? */
if (!p_dev_ctl) {

rc = ENODEV;
break;

}
                if (copyout((caddr_t)&p_dev_ctl–>vpd, ndd_config.p_vpd, 

(int)ndd_config.l_vpd)) {
                        rc = EIO;

}
break;

default:
rc = EINVAL;

  }
  /* if we are about to be unloaded, free locks */
  if (!xx_dd_ctl.num_devs) {

/* free locks here */
xx_inited = FALSE;

  }
 unpincode(xx_open);         /* unpin the entire driver */
 unlockl(&CFG_LOCK);
 return (rc);
}

CDLI – Device Driver Interface
In AIX Version 4.1, network device drivers should be entered only through the kernel CDLI
users.  STREAMS and sockets are implemented above CDLI, so that users gain access to
the network device drivers through the standard socket and STREAMS application
interface. The kernel establishes a ndd structure (refer to /usr/include/sys/ndd.h) for all
network devices. This structure defines the entry points that the device driver must support.
The following is a list of these entry points:

• ndd_open

• ndd_close

• ndd_output

ndd_open Entry Point
This entry point has the following format:

ndd_open(struct ndd *ndd)

The parameter ndd is a pointer to the system ndd structure for this network device. The file
/usr/include/sys/ndd.h contains the definition of this structure.

Device driver users (DLPI or  the socket network interface layer) gain access to the device
through a call to the ns_alloc kernel service. This kernel service opens the network device,
if required, by a call to the ndd_open entry point.

When the ndd_open function is called, the device driver should allocate the necessary
system resources (such as DMA channel, interrupt level and priority). It should register it’s
interrupt handler with the system using the i_init kernel service and initialize the device.
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After the open is successful, the device driver is responsible for ORing the ndd_flag field
with NDD_UP. The device driver should have ORed this field with NDD_RUNNING upon
successful initialization.

ndd_open can be called from the process environment only.

A code fragment for a sample network device driver open routine follows:

xx_open(
  ndd_t         *p_ndd)         /* pointer to the ndd in the dev_ctl area */
  {
   xx_dev_ctl_t   *p_dev_ctl = (xx_dev_ctl_t *)(p_ndd–>ndd_correlator);
   int rc;
  /*
   * Set the device state and NDD flags
   */
   p_dev_ctl–>device_state = OPEN_PENDING;
   p_ndd–>ndd_flags = NDD_BROADCAST | NDD_SIMPLEX;
   /* set up locks, register interrupt handler */
   .....
   .....
   p_ndd–>ndd_flags |= (NDD_RUNNING | NDD_UP);
   return(0);
}

ndd_close Entry Point
This entry point has the following format:

ndd_close(struct ndd *ndd)

The parameter ndd is a pointer to the system ndd structure for this network device.

DLPI or the socket network interface layer relinquishes access to a network device by
calling the ns_free kernel service. This kernel service will close the device, when the user
reference count reaches 0, by a call to the ndd_close entry point.

When the ndd_close function is called, the device driver should free its system resources
(including all mbufs) and deregister its interrupt handler through a call to the i_clear kernel
service. On entry to the close routine the device driver should remove the NDD_UP and
NDD_RUNNING flags from the ndd_flags field.

ndd_close can be called from the process environment only.

A code fragment for an example Network Device Driver close routine follows:
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xx_close(
  ndd_t       *p_ndd)  /* pointer to the ndd in the dev_ctl area */
{
  xx_dev_ctl_t   *p_dev_ctl = (xx_dev_ctl_t *)(p_ndd–>ndd_correlator);
  int ipri; 
 if (p_dev_ctl–>device_state == OPENED) {
  p_dev_ctl–>device_state = CLOSE_PENDING; 
 /* wait for the transmit queue to drain */
  while (p_dev_ctl–>device_state == CLOSE_PENDING &&

(p_dev_ctl–>tx_pending || p_dev_ctl–>txq_len)) {
DELAYMS(1000); /* delay 1 second */

  }

  }

  /*
   * deactivate the adapter 
   */
  p_dev_ctl–>device_state = CLOSED;
  p_ndd–>ndd_flags &= ~(NDD_RUNNING | NDD_UP | NDD_LIMBO | NDD_DEAD);

  unlock_enable(ipri, &SLIH_LOCK);

 /* cleanup all the resources allocated for open */
  ......
  unpincode(xx_open);
  return(0);
}

ndd_output Entry Point
This entry point has the following format:

ndd_output(struct ndd *ndd, struct mbuf *data)

The entry point has the following parameters:

• ndd is a pointer to the system ndd structure for this network device.

• data is a pointer to the mbuf chain to be transmitted.

DLPI or the socket network interface layer calls ndd_output directly to output data on the
network device.

The first mbuf in each packet chain will be of the M_PKTHDR format (see
/usr/include/sys/mbuf.h). Multiple mbufs may hold the packet and will be linked to data via
the m_next field. Multiple packets on the transmit are supported and these will be linked to
data via the m_nextpkt field. m_pkthdr.len is set equal to the total length of the
individual packet.

On successful transmit, the device driver is responsible for freeing all mbufs. On failure, this
is the callers responsibility. In the case of a multiple packet transmission, if any of the
packets are transmitted the device driver should return success and free the mbufs.

On output, the device driver should check the value of ndd–>ndd_trace. If this entry point
is not null then the device driver should call the trace point for each packet which is
transmitted (chained packets must be unchained before this call). The format of the call is:

(*ndd_trace) (struct ndd *ndd, struct mbuf *data,  caddr_t *hp,
ndd–>ndd_trace_arg)

Parameters for ndd_trace have the following meanings:
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• ndd is a pointer to the system ndd structure for this network device.

• data is a pointer to the mbuf chain to be transmitted.

• hp is a pointer to the start of the data in the mbuf being transmitted

• ndd_trace_arg is a cookie set by the trace routine.

The trace routine does not free the mbuf chain.

If transmission fails because of queue overruns, the device driver should return EAGAIN.

ndd_output may be called from the process or interrupt environment.

A code fragment for an example Network Device Driver output routine follows:

xx_output(
  ndd_t *p_ndd, /* pointer to the ndd in the dev_ctl area */
  struct mbuf *p_mbuf) /* pointer to a mbuf (chain) */
{
  xx_dev_ctl_t   *p_dev_ctl = (xx_dev_ctl_t *)(p_ndd–>ndd_correlator);
  struct mbuf *p_cur_mbuf;
  struct mbuf *buf_tofree;
  int bus;
  int first;
  if (p_dev_ctl–>device_state != OPENED) {

return(ENETDOWN);
  }
  /*
   * if there is a transmit queue, put the packet onto the queue.
   */
  if (p_dev_ctl–>txq_first) {

/*
 *  if the txq is full, return EAGAIN. Otherwise, queue as
 *  many packets onto the transmit queue and free the
 *  rest of the packets, return no error.
 */
.......
......

  }
  while (p_mbuf) {

p_cur_mbuf = p_mbuf;
/*
 * If there is txd available, try to transmit the packet.
 */
if (!(WRK.txd_avail–>flags & XX_IN_USE)) {

if (!xx_xmit(p_dev_ctl, p_cur_mbuf, bus)) {
    /*
     * Transmit OK, free the packet
     */

      p_mbuf = p_mbuf–>m_nextpkt;
    p_cur_mbuf–>m_nextpkt = NULL;;
    m_freem(p_cur_mbuf);
    first = FALSE;
}
else {
    /*
     * Transmit error. Call hardware error recovery
     * function. If this is the first packet,
     * return error. Otherwise, free the reset packets
     * and return error. 
     */
    p_ndd–>ndd_genstats.ndd_oerrors++;
    if (first) {

return(ENETDOWN);
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    }
    else {

/* increment the error counter */
while (p_cur_mbuf = p_mbuf) {

p_mbuf = p_mbuf–>m_nextpkt;
p_cur_mbuf–>m_nextpkt = NULL;
m_freem(p_cur_mbuf);

}
  return(0);

    }
}

}    /* if there is txd available */
else {

while (p_cur_mbuf = buf_tofree) {
p_ndd–>ndd_genstats.ndd_xmitque_ovf++;
p_ndd–>ndd_genstats.ndd_opackets_drop++;
buf_tofree = buf_tofree–>m_nextpkt;
p_cur_mbuf–>m_nextpkt = NULL;
m_freem(p_cur_mbuf);

}
return(0);

}
  }    /* while */
  return(0);
}

xx_xmit(
  xx_dev_ctl_t  *p_dev_ctl,/* pointer to the device control area */
  struct mbuf *p_mbuf, /* pointer to the packet in mbuf */
  int bus) /* handle for I/O bus accessing */
{
  ndd_t   *p_ndd = &(p_dev_ctl–>ndd);

int count;
int offset;
int rc;
int pio_rc = 0;
/*
 * Call ndd_trace if it is enabled
 */
if (p_ndd–>ndd_trace) {

(*(p_ndd–>ndd_trace))(p_ndd, p_mbuf, 
p_mbuf–>m_data, p_ndd–>ndd_trace_arg);

}
/* increment the tx_pending count */
p_dev_ctl–>tx_pending++;
/*
 * copy data into transmit buffer and do processor cache flush

         */
        m_copydata(p_mbuf, 0, count, p_txd–>buf);

/*
 * Pad short packet with garbage
 */
if (count < XX_MIN_MTU)

count = XX_MIN_MTU;
p_txd–>tx_len = count;
......
.....
/* 
 * tell the adapter how many bytes to send
 * clear the status and set the EOP and EL bit.

         */
 ......

        /* start watchdog timer */
        w_start(&(TXWDT));

return(0);
}
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ndd_ctl Entry Point
This entry point for the IOCTL system call has the following format:

ndd_ctl(struct ndd *ndd, int cmd, caddr_t arg, int length)

This entry point has the following parameters:

• ndd is a pointer to the system ndd structure for this network device.

• cmd is the IOCTL.

• arg is the address of the ioctl arguments. This address will be in kernel memory.

• length is the length of arg.

The ioctls for a network device driver are shown below:

NDD_ADD_FILTER
Add receive data filter. arg points to the address of the filter
function to add.

NDD_DEL_FILTER
Remove receive data filter. arg points to the address of the filter
function to remove.

NDD_ADD_STATUS
Add status filter. arg points to the address of the filter function to
add.

NDD_DEL_STATUS
Delete status filter. arg points to the address of the filter function to
delete.

NDD_CLEAR_STATS
Clear all statistics maintained by the network device driver.

NDD_DISABLE_ADDRESS
Disable a multicast address. Remove the NDD_ALTADDRS flag in
the ndd structure. arg contains the multicast address.

NDD_ENABLE_ADDRESS
Enable a multicast address. Set the NDD_ALTADDRS flag in the
ndd structure. arg contains the multicast address.

NDD_GET_STATS
Get general statistics from the network device. General statistics
are maintained by the device driver in the ndd_genstats field of
the ndd. arg points to a user buffer where the ndd_genstats
information should be placed.

NDD_GET_ALL_STATS
Get all statistics from the network device. All statistics means
general statistics maintained by the device driver in the
ndd_genstats field of the ndd and additional specific statistics
maintained by the device driver in a structure pointed to by the
ndd_specstats field. Some device drivers may only update
specific statistics when IOCTL commands are processed. arg
points to a device-specific structure that contains the
ndd_genstats structure followed by device-specific information.

NDD_MIB_QUERY
Return the MIB structure identifying which options the device



12-11Network Device Driver

supports. arg is a pointer to a structure of type generic_mib_t in
the kernel address space.

NDD_MIB_GET
Get device specific MIBs. arg is a pointer to a structure of type
generic_mib_t in the kernel address space.

NDD_DUMP_ADDR
Return the address of remote dump routine in arg.

NDD_MIB_ADDR
Get all receive addresses for the device. arg is a pointer to a
structure of type ndd_mib_addr_elem_t in the kernel address
space.

NDD_ENABLE_MULTICAST  
Enable receipt of all multicast packets. Set NDD_MULTICAST flag
in ndd structure.

NDD_DISABLE_MULTICAST  
Disable receipt of all multicast packets. Remove NDD_MULTICAST
flag in ndd structure.

NDD_PROMISCUOUS_ON  
Set promiscuous mode on if the adapter allows this. Promiscuous
mode allows the adapter to receive all the packets transmitted on
the network. Set NDD_PROMISC flag in ndd structure.

NDD_PROMISCUOUS_OFF
Set promiscuous mode off. Remove NDD_PROMISC flag in ndd
structure.

Network device drivers are not required to support all of the preceding IOCTLs. For IOCTLs
not supported, the driver should return EOPNOTSUPP.

Additional device specific IOCTLs may also be supported.

DLPI or the socket network interface layer calls ndd_ctl directly if one of the preceding
IOCTLs is issued on a stream or a raw (AF_NDD) socket.

ndd_ctl can be called from the process or interrupt environment.

Device Driver – CDLI Interface
This consists of the following kernel services and functions:

• ns_attach and ns_detach

• nd_receive

• nd_status

ns_attach and ns_detach Kernel Services
These have the following format:

ns_attach(struct ndd *ndd)
ns_detach(struct ndd *ndd)

The parameter ndd is a pointer to the system ndd structure for this network device.

The preceding two kernel services are called by network device driver configuration
functions to add or remove their network device from the system’s list of available devices.
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These services are discussed, in detail, in the initialization and CDLI–Device Driver
Interface sections.

ns_attach and ns_detach can be called from the process environment only.

nd_receive Function
Network device drivers pass receive data to the system through calls to the nd_receive
function that is specified in the ndd structure for the network device. This function may be
null. The format of the call is:

The format of the call is:

(*nd_receive(struct ndd *ndd, struct mbuf *data))

The parameters are as follows:

• ndd is a pointer to the system ndd structure for this network device.

• data is a pointer to the mbuf chain to be received.

AIX supports multiple protocols, concurrently, on the same network device for both sockets
and STREAMS users. To accomplish this receive packets are passed to network demuxers.
Network demuxers are loadable kernel extensions whose function is to route packets to the
appropriate user. Generally, a unique demuxer will be required for each type of network
device. This is because knowledge of the physical layer data headers is required for packet
routing. Network device driver writers will need to provide a network demuxer with their
device driver if one of the system-provided demuxers is not satisfactory for their network
device. Because both device drivers and network demuxers are loadable kernel extensions
it is possible to add a completely new network device to AIX Version 4.1 without requiring
any modifications to the base operating system. The device driver can either bind in a
network demuxer or have the system add a demuxer appropriate for the type of network
device being added. When DLPI or the socket network interface layer calls ns_alloc to
register use of a network device driver, the system checks if the ndd_demuxer field in the
ndd structure is null. If the field is null (the device driver has not bound in a demuxer) then
the system searches the known demuxers in the system trying to find a demuxer for this
type of network device. The interface type is set in the ndd_type field of the ndd structure
and describes classes of network devices which have the same physical layer
characteristics such as 802.3 Ethernet and Token Ring. All devices of the same type can
use a common demuxer. If a match is found, ns_alloc sets the ndd receive and status
function pointers to the demuxers. It also sets the ndd_demuxsource field to 0 (system
provided). AIX Version 4.1 provides demuxers for the following interface types:
NDD_ISO88023, NDD_ISO88025 and NDD_FDDI (see /usr/include/sys/ndd.h). Device
driver writers for network devices of these types may elect to use the system demuxers
instead of providing their own.

Typically, the nd_receive function is called by the device driver’s receive interrupt routine. It
is only called for receive frames that are not in error for any reason. The mbuf pointer
passed to the nd_receive function may contain more than one mbuf chain.

nd_receive may be called with interrupts disabled.

nd_status Function
Network device drivers pass status event information to the system through calls to the
nd_status function that is specified in the ndd structure. This function may be null.

The format of the call is:

(*nd_status(struct ndd *ndd, struct ndd_statblk *status))

The call has the following parameters:
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• ndd is a pointer to the system ndd structure for this network device.

• status is a pointer to the status block. This structure is defined in
/usr/include/sys/ndd.h

The nd_status function is typically called by the device driver’s receive interrupt routine
upon receipt of a bad frame.  If the adapter has support for status interrupts, it should be
called by the status interrupt routine. The status structure of type ndd_statblk should
have the code field set to NDD_BAD_PKTS and values set in the option fields before
nd_status is called. After calling the nd_status function, the interrupt routine should free
the mbufs associated with the bad frame, or frames.

nd_status can be called from the process or interrupt environment.

Writing a Network Demuxer
Network demuxers, including the system provided ISO88023, ISO88025 and FDDI
demuxers, are implemented as loadable kernel extensions in AIX Version 4.1  The following
general guidelines apply:

• By convention, network demuxer kernel extensions are installed in the /usr/lib/drivers
directory. Some system utilities may assume that this is the case.

• When building the kernel extension the relevant base system exports must be imported.
The system provided demuxers import the following: kernex.exp, syscalls.exp. The
system export files are located in the /usr/lib directory.

• Network demuxer writers must decide how much of the kernel extension to pin. The
major consideration is that the demuxer’s receive and status functions will be called with
interrupts disabled. In general, the system provided demuxers are pinned in their entirety.

• Network demuxers must be configured and loaded into the system.

Network demuxers are loadable kernel extensions whose function is to route incoming
packets to the appropriate user. Generally, a unique demuxer will be required for each type
of network device. This is because knowledge of the physical layer data headers is required
for packet routing. DLPI and the socket network interface layer make direct calls to network
demuxers to register particular packet types to be received. Device drivers call network
demuxers to route packets and status events to the correct users.

Demuxer Initialization
Network demuxer initialization involves execution of the kernel extension’s configuration
entry point. This configuration entry point is called by the configuration method of the
network device driver during the system boot up. This function is invoked when the network
demuxer is built and is called by the system when the kernel extension is loaded.The format
of the entry should be as follows:

(*network_demuxer_config) (int cmd, struct uio *uio)

The entry has the following parameters:

cmd Designates a particular demuxer command.

uio Pointer to a uio structure. This is generally ignored by demuxers.

Command values that should be recognized by the network demuxer are:

CFG_INIT Initialize the demuxer.

CFG_TERM Terminate the demuxer.
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Other demuxer specific commands can be defined.

When called with the CFG_INIT command the demuxer’s configuration function should
perform the following tasks:

• Do any pinning of modules or data structures required by the demuxer.

• Do any lock initialization required by the demuxer.

• Initalize the demuxer control structures.

• Call the ns_add_demux kernel service to add the demuxer to the system’s list of
available demuxers. This step is not required if the demuxer is to be bound to a device
driver or is not to be made available to other network devices.

When called with the CFG_TERM command the demuxer’s configuration function should
perform the following tasks:

• Verify that there are no active users of the demuxer.

• Do any unpinning of modules or data structures required by the demuxer.

• Free any lock resources.

• Free any demuxer control structures.

• If required, call the ns_del_demux kernel service to remove the demuxer from the
system’s list of available demuxers.

nd_add_filter Function
The nd_add_filter function adds a receive filter for the routing of received data. It is
invoked by the CDLI routines and has the following entry point:

(*nd_add_filter)(struct ndd *nddp, caddr_t filter, int len, ns_user_t ns_user)

The entry point has the following parameters:

nddp Pointer to the system ndd structure for this demuxer.

filter Address of a user defined structure which contains information that the
demuxer needs such as filter type. See /usr/include/sys/cdli.h for the
ns_8022 structure as an example of what is used for this parameter with
802.2 networks.

len Length in bytes of the filter parameter.

ns_user Pointer to the ns_user structure that describes the user of the filter. The
structure is defined in /usr/include/sys/cdli.h.

The nd_add_filter field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer.  The function should perform the following
tasks:

• Set any necessary data structure locks

• Perform sanity checks on the fields of the ns_user structure

• Handle the appropriate filter type specified in the filter parameter, if applicable.

• Set the nddp–>ndd_specdemux field to a pointer to a private demuxer control structure
that maintains a list of which filters have been added. Be sure to save ns_user
information here; it will later be retrieved by the nd_receive function.

• Call the nddp–>ndd_ctl entry point of the Network Device Driver to register the filter with
the NDD.  The calling format is:
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((*nddp–>ndd_ctl))(nddp,NDD_ADD_FILTER,filter,len);

• If any errors are returned from the preceding call, invoke the appropriate  demuxer delete
filter function.

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

nd_del_filter Function
The nd_del_filter function for the demuxer deletes a previously specified receive filter. It is
invoked by the CDLI routines and has the following entry point:

(*nd_del_filter)(struct ndd *nddp, caddr_t filter, int len)

The entry point has the following parameters:

nddp Pointer to the system ndd structure for this demuxer.

filter Address of a user defined structure which contains information about the
filter that is to be deleted.

len Length in bytes of the filter parameter.

The nd_del_filter field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer.  The function should perform the following
tasks:

• Set any necessary data structure locks.

• Check the len parameter for correctness and verify that a filter has previously  been
added.

• If applicable, handle the appropriate filter type specified in the filter parameter.

• Retrieve the filter list from nddp–>ndd_specdemux, search for the filter to be deleted
and free any storage associated with that filter.

• Call the nddp–>ndd_ctl entry point of the Network Device Driver to inform it that the
filter is being deleted. On return from this entry point, check for nonzero error return
codes. The calling format is:

((*nddp–>ndd_ctl))(nddp,NDD_DEL_FILTER,filter,len);

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

nd_add_status Function
The nd_add_status function adds a filter for routing asynchronous status. It is invoked by
the CDLI routines and has the following entry point:

(*nd_add_status)(struct ndd *nddp, caddr_t filter, int len, ns_statuser *ns_statuser)

The entry point has the following parameters:

nddp Pointer to the system ndd structure for this demuxer

filter Address of a user defined structure which contains information that the
demuxer needs such as filter type. See /usr/include/sys/cdli.h for the
ns_com_status structure as an example of what is typically used  for this
parameter.

len Length in bytes of the filter parameter.
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ns_statuser Pointer to structure describing the status user. The structure is defined in
/usr/include/sys/cdli.h.

The nd_add_status field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer.  The function should perform the following
tasks:

• Set any necessary data structure locks.

• Check the len parameter for correctness and verify that a filter has previously  been
added.

• Call the dmx_add_status kernel service to add the status filter. The calling format is:

  dmx_add_status(nddp, filter, ns_statuser)

• If no errors were encountered, call the nddp–>ndd_ctl entry point of  the Network
Device Driver to register the status filter. On return from this entry point, check for
nonzero error return codes. The calling format is:

 ((*nddp–>ndd_ctl))(nddp,NDD_ADD_STATUS,filter,len);

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

nd_del_status Function
The nd_del_status function deletes a previously added status filter. It is invoked by the
CDLI routines and has the following entry point:

(*nd_del_status)(struct ndd *nddp, caddr_t filter, int len)

The parameters are the same as the parameters of the companion nd_add_status
function.

The nd_del_status field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• Check the len parameter for correctness and verify that a filter has previously  been
added.

Call the dmx_del_status kernel service to delete the status filter. The calling format is:

dmx_del_status(nddp, filter)

• If no errors were encountered, call the nddp–>ndd_ctl entry point of the Network Device
Driver to unregister the status filter. On return from this entry point, check for nonzero
error return codes. The calling format is:

 ((*nddp–>ndd_ctl))(nddp,NDD_DEL_STATUS,filter,len);

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

nd_receive Function
The nd_receive function is invoked by the Network Device Driver for receive packets.

The nd_receive field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer.  The function should perform the following
tasks:
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• Set any necessary data structure locks.

• If there are no receive filters, free all the mbufs and return.

• Grab each mbuf in the chain and parse the header data to determine which type of
additional processing needs to be done. For example, an Ethernet driver will send the
nd_receive function 802.3 packets, or standard Ethernet type packets, or both of these
types of packets. Use the macros DELIVER_PACKET or IFSTUFF_AND_DELIVER
found in /usr/include/net/nd_lan.h to send the data to the next layer. For 802.2 style
networks, the dmx_8022_receive kernel service has been provided to send the data to
the next layer. The entry point has the following format:

  dmx_8022_receive(struct ndd *nddp, struct mbuf *m, int len)

For this entry point, the len parameter is the size of the MAC header in bytes.

• After exhausting all the mbufs in the chain, release all locks and return. The return value
for this function is void.

For more information, see the description of nd_receive, on page 12-12, in “Writing a
Network Device Driver”.

nd_status Function
The nd_status function is invoked by the Network Device Driver for all status conditions. It
distributes asynchronous status to the appropriate network services users.

The nd_status field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer.  The function should perform the following
tasks:

• Set any necessary data structure locks.

• Pass status information to the next layer by calling the dmx_status kernel service. The
calling format is:

  dmx_status(struct ndd *nddp, struct ndd_statblk *status)

• Release all locks set upon entry into the function. The return value of this function is void.

For more information, see the description of nd_status, on page 12-12, in “Writing a
Network Device Driver”.

nd_response Function
The nd_response function is invoked by the higher level protocols if they choose to
perform 802.2 LLC Exchange Station ID or TEST Link Frame processing. It has the
following entry point:

(*nd_response)(struct ndd *nddp, struct mbuf *m, int llcoffset)

The entry point has the following parameters:

ndd Pointer to the system ndd structure for this demuxer.

m Poiner to a mbuf structure which may not contain more than one packet
which contains a XID or TEST packet.

llcoffset Byte offset to the start of the llc header in the mbuf.

The nd_response field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.
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• Copy the MAC source address for the MAC destination address and copy the
nddp–>ndd_physaddr to the MAC source address.

• If the MAC destination address indicates routing information is present, turn off the
routing control bits in the MAC header.

• Call the device driver output routine (*nddp–>ndd_output)(nddp,m) to send the
packet to the driver. If a nonzero error is returned, free the mbuf.

• Release all locks set upon entry into the function. The return value of this function is void.

DLPI/Socket – Network Demuxer Interface
When a network demuxer is bound to a network device driver either by the device driver or
through a ns_alloc call (ns_alloc is described in the appendix of this book), a linkage is
created between the ndd structure and the demuxer’s ns_demuxer structure (defined in
/usr/include/sys/cdli.h). This is done by setting the ndd_demuxer field in the ndd
structure equal to the address of the demuxer’s structure. When DLPI or the socket network
interface issues a request to the system (using ns_add_filter or ns_del_filter) to start
receiving or stop receiving packets or status on this network interface, the system invokes
the demuxer’s entry points for adding or deleting filters or status as defined in the
ns_demuxer structure. A sample fragment of code for ns_add_filter is:

/********************************************************************
*
*   ns_add_filter() –  Pass ”add filter” request on to demuxer
*   
********************************************************************/
ns_add_filter(nddp, filter, len, ns_user)
     struct ndd     *nddp;     /* specific interface  */
     caddr_t        filter;
     int           len;
     struct ns_user  *ns_user;  /* the details  */
{
      return((*(nddp–>ndd_demuxer–>nd_add_filter))
                  (nddp, filter, len, ns_user));
}

Thus these kernel service are really entry points into the network demuxer. The syntax of
the calls are as follows:

ns_add_filter(struct ndd *ndd, caddr_t  filter, int len,
               struct ns_user *ns_user);

The following parameters apply to ns_add_filter:

ndd Pointer to the system ndd structure for this network device. Typically, a
demuxer user obtains this pointer through a prior call to ns_alloc.

filter Address of the filter function to be added. This is demuxer dependent.

len Length of the filter.

ns_user Pointer to a ns_user structure. This structure is defined in
/usr/include/sys/cdli.h.

“Sample Code – DLPI Call to ns_add_filter”, on page 12-21, shows how DLPI calls
ns_add_filter. First, a ns_alloc call is made to obtain the ndd pointer. DLPI builds the
interface name from the basename of the device being opened (for example, ”tr” for
/dev/dlpi/tr) and the physical point of attachment (for example, 0) passed by the user in the
DL_ATTACH_REQ. Next the sample illustrates how DLPI handles a DL_SUBS_BIND_REQ
request to receive packets from this interface that match a specific 802.2 logical link control
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(LLC) header. Note that DLPI simply passes the users request intact to the demuxer.  Also
note how the ns_user structure is built. The isr field points to the DLPI interrupt handler
and isr_data is set to the internal address of this Stream.  When the demuxer calls DLPI
on a receive packet it also returns isr_data and DLPI does not need to do any packet
demultiplexing to locate the target user. The netisr field is NULL indicating that the DLPI
interrupt routine is to be called on the interrupt level. pkt_format  tells the demuxer how
much of  the LLC header to remove on input (and how much to expect on output). DLPI
simply passes the format which the user has set through an IOCTL.

ns_add_status has the following syntax:

ns_add_status(struct ndd *ndd, caddr_t  filter, int len, struct
ns_statuser *ns_statuser);

The following parameters apply to ns_add_status:

ndd Pointer to the system ndd structure for this network device. Typically, a
demuxer user obtains this pointer through a prior call to ns_alloc.

filter Address of the status function to be added. This is demuxer dependent.

len Length of the filter.

ns_statuser Pointer to a ns_statuser structure. This structure is defined in
/usr/include/sys/cdli.h.

When ns_add_status is called, the demuxer should issue a ndd_ctl with the
NDD_ADD_STATUS operation.

The call to reverse ns_add_filter is ns_del_filter. The call to reverse ns_add_status is
ns_del_status.

ns_del_filter has the following syntax:

ns_del_filter(struct ndd *ndd, caddr_t filter, int len)

The function arguments for ns_del_filter are the same as those for ns_add_filter.

ns_del_status has the following syntax:

ns_del_status(struct ndd *ndd, caddr_t filter, int len)

The function arguments for ns_del_status are the same as those for ns_del_filter.

The demuxer should issue a ndd_ctl with the NDD_DEL_STATUS operation when the
ns_del_status entry point is called.

Many of the demuxer functions for 802.2 LANs can be handled by common routines. A
demuxer can register to use these functions by setting nd_use_nsdmx in the demuxers
ns_demuxer structure to the true value. Setting nd_use_nsdmx true causes the dmx_init
function to be called when ns_alloc binds a network demuxer to a system ndd structure.
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Device Driver – Network Demuxer Interface
The Network Device Driver determines which demuxer to use by setting the ndd_type field
during configuration in its config entry point routine. (For more information see “Writing a
Network Device Driver”, on page 12-2.)  A list of defined ndd_types can be found in
/usr/include/sys/ndd.h; a typical name is NDD_ISO88023. The command ifconfig calls
the configuration method of the NDD, which calls the configuration method for the demuxer.
In addition, ifconfig calls the configuration method for the associated NID for the interface.
(For more information, see “Loading and Initialization” in “Network Interface Driver
Functions”, on page 12-22.)

The demuxer’s configuration entry point passes to the ns_add_demux function a structure
of type ns_demuxer  that contains fields that are set to the address of functions that the
CDLI and Network Device Driver routines eventually call. For the NDD, this means that the
nd_receive and nd_status fields of the ndd structure are used. These fields contain
function pointers to the appropriate demuxer functions. (For more information, see the
discussion of the nd_receive function, on page 12-16, and the discussion of the nd_status
function, on page 12-17.)
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Sample Code – DLPI Call to ns_add_filter
/*
 * dlb_attach – attach interface to this module
 *
 */
staticf MBLKP
dlb_attach(dlb, mp)

DLBP dlb;
MBLKP mp;

{
int len;
int ppa;
char *name;
NDDP ndd;

...
ppa = ((dl_attach_req_t *)(mp–>b_rptr))–>dl_ppa;
name = mknddname(dlb–>dlb_nddname, ppa);
if (ns_alloc(name, &ndd)) {

...
}

...
}
/*
 * dlb_subs_bind – bind a SNAP
 *
 * if dlb_isap != 0xAA, then either
 * – we bound to some non–snap sap
 * – we have already done a subs_bind
 */staticf MBLKP
dlb_subs_bind(dlb, mp)

DLBP dlb;
MBLKP mp;

{
dl_subs_bind_req_t *dlsbr = (dl_subs_bind_req_t *)mp–>b_rptr;
snap_t *snap = (snap_t *)(mp–>b_rptr + dlsbr–>dl_subs_sap_offset);
int err = 0;
struct ns_8022 dl;
struct ns_user ns_user;

...
else if (dlsbr–>dl_subs_bind_class != DL_HIERARCHICAL_BIND)

err = DL_NOTSUPPORTED;
else if (dlsbr–>dl_subs_sap_length != sizeof(snap_t))

err = DL_BADADDR;
else if ((char *)snap + sizeof(snap_t) > mp–>b_wptr)

err = DL_BADADDR;
...

ns_user.isr = (int)dlb_intr;
ns_user.isr_data = (caddr_t)dlb;
ns_user.protoq = nilp(struct ifqueue);
ns_user.netisr = NULL;
ns_user.ifp = nilp(struct ifnet);
ns_user.pkt_format = dlb–>dlb_pkt_format;
dl.filtertype = NS_8022_LLC_DSAP_SNAP;
dl.dsap = dlb–>dlb_isap;
bcopy(snap, dl.orgcode, sizeof(snap_t));
if (err = ns_add_filter(dlb–>dlb_ndd, &dl, sizeof(dl), &ns_user)) 

return dlb_error(mp, DL_SUBS_BIND_REQ, err, dlb);
...
}
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Writing a Network Interface Driver
The AIX Network Interface Driver (NID) is a layer of software between a network device
driver (NDD) and an AIX network layer. This layer is required for all network device drivers
that have to be made available to a network layer. This discussion concentrates on NIDs for
an Internet Protocol (IP) network layer, though you can easily modify an NID to support other
network layers.

An AIX Network Interface Driver provides a uniform interface to the IP layer. The NID passes
output packets from the IP layer to the Network Device Driver (NDD). The device driver
insulates the NID from the hardware but does not hide the special anomaly from the type of
underlying physical network.

Each type of physical network has unique access requirement. For Ethernet, this is the
Ethernet header. For a Token Ring, it is the MAC/LLC header. These different anomalies of
the network are handled inside the NID, providing a uniform interface to the network
protocols.

Basic Functions of a Network Interface Driver
The NID is a dynamically loadable kernel extension similar to a device driver. You must load
or add the NID to the kernel through a configuration method. A typical NID performs the
following basic functions:

• Provides a uniform interface from the network layer to the network device driver.

• Translates an IP address to a hardware address for the underlaying device driver.

• Builds the communication device driver specific protocol header (see the Data Packet for
Ethernet figure, on page 12-27).

• Communicates with the network device driver.

A specific NID may perform more functions than those previously listed.

Summary of NID Changes in AIX Version 4.1
Several functions which were in AIX Version 3.2 NIDs have been removed from the NIDs
and placed into the Network Demuxer. For example, the Receive Data and Status Interrupt
function has been moved to the Network Demuxer. (For more information on this, see
“Writing a Network Demuxer”, on page 12-13.)  The add_arp_iftype, del_arp_iftype, and
find_arp_iftype kernel services are no longer available, making it the responsibility of NID
writers to either supply their own ARP and address resolution routines or to use the one
supplied by the system. There is an all new set of NID specific IOCTL calls. Finally, there are
some small changes regarding initialization and termination of the NID.

Network Interface Driver Functions
A network interface driver (NID) performs the following functions:

• Loading and initializing
• Communicating with the NDD
• Translating network addresses to hardware addresses
• Handling NID specific IOCTL calls
• Terminating and unloading.

Loading and Initialization
The configuration method, ifconfig, loads the AIX NID kernel extension.
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The ifconfig command configures the correct NID with the correct Network Device Driver
(NDD). The non-numeric portion of the interface parameter from the command line is used
as the NDD name. The NID name is the same as the NDD name with if_  prepended to the
NDD name. For example, the following command tells ifconfig to configure NID if_en and
NDD en in /usr/lib/drivers:

ifconfig en0 1.1.1.1 up

The ifconfig command is run automatically when the system is started, and configures all
NIDs that have been defined in the ODM database. For your NID to be automatically
configured, your interface must be defined in the CuDv ODM object class with the parent
attribute set to inet0 and the name attribute set to the name of your interface. In addition,
the CuAt ODM object class must have a corresponding netaddr attribute defined for the
interface.

If you choose not to have ifconfig configure your NID automatically, you can manually issue
the command as shown above, or place the command in one of the shell scripts that are run
when the system is started.

After loading the NID, the configuration method calls the NID kernel extension entry point
with the CFG_INIT command. This initializes the AIX NID.

Steps during initialization include:

• Pin the code and data for the NID kernel extension if not already pinned. The code might
be pinned already if the configuration method for this NID has been invoked earlier for
another adapter of the same type. If there are multiple adapters of the same type, the
same NID code services all these adapters. It is not necessary to load multiple copies of
an NID for multiple adapters of the same type.

• Open and initialize the underlying NDD. This is done by the ns_alloc subroutine in the
following sample code.

• Initialize an ifnet structure and call the if_attach kernel service. This is done by
xx_attach in the following sample code. The if_attach kernel service adds a NID to the
network interface list, which is a linked list of ifnet structures.

Initialize the ifnet structure with the address of the output routine (ifp–>if_output), ioctl
routine (ifp–>if_ioctl), and reset routine (ifp–>if_reset).

The following sample code illustrates loading and initializing:

struct  xx_softc {
struct  arpcom xx_ac;   /* common part         */
struct ndd      *nddp;

};

config_xx(cmd, uio)
int cmd;
struct uio *uio;
{

struct device_req device;
int error = 0;
int unit;
struct xx_softc *xxp;
char *cp;
int type;
if ( (cmd != CFG_INIT) || (uio == NULL) )

return(EINVAL);
if (uiomove((caddr_t) &device, (int)sizeof(device), UIO_WRITE, uio))

return(EFAULT);
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lockl(&if_xx_lock, LOCK_SHORT);
if (init == 0) {

if (ifsize <= 0)
ifsize = IF_SIZE;

if (error = pincode(config_xx))
goto out;

xx_softc = (struct xx_softc *)
xmalloc(sizeof(struct xx_softc)*ifsize, 2, pinned_heap);

if ( (xx_softc == (struct xx_softc *)NULL) ||
     (xx_softc == (struct xx_softc *)NULL) ) {

unpincode(config_xx);
unlockl(&if_xx_lock);
return(ENOMEM);

}
bzero(xx_softc, sizeof(struct xx_softc) * ifsize);
init++;

}
cp = device.dev_name;
while(*cp < ’0’ || *cp > ’9’) cp++;
unit = atoi(cp);
if (unit >= ifsize) {

error = ENXIO;
goto out;

}
if (!strncmp(device.dev_name, ”xx”, 2)) {

type = IFT_XX;
xxp = &xx_softc[unit];

} else {
error = EINVAL;
goto out;

}
error = ns_alloc(device.dev_name, &xxp–>nddp);
if (error == 0)

xx_attach(unit, type);
else

bsdlog(LOG_ERR, 
”if_xx: ns_alloc(%s) failed with errno = %d\n”, 
device.dev_name, error);

out:
unlockl(&if_xx_lock);
return(error);

}
xx_attach(unit, type)
unsigned unit;
unsigned type;
{

register struct ifnet *ifp;
register struct xx_softc        *xxp;
extern int xx_output();
extern int xx_ioctl();
xxp             = &xx_softc[unit];
ifp             = &xxp–>xx_if
ifp–>if_name    = ”xx”;
ifp–>if_mtu     = ??;
ifp–>if_type    = type;
ifp–>if_unit    = unit;
bcopy(xxp–>nddp–>ndd_physaddr, xxp–>xx_addr, 6);
ifp–>if_flags = IFF_BROADCAST | IFF_NOTRAILERS;
/* Check if the adapter supports local echo */
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if (xxp–>nddp–>ndd_flags & NDD_SIMPLEX)
ifp–>if_flags |= IFF_SIMPLEX;

ifp–>if_output = xx_output;
ifp–>if_ioctl = xx_ioctl;
ifp–>if_addrlen = ??;
ifp–>if_hdrlen  = ??;
ifp–>if_mtu     = ??;
ifp–>if_unit    = unit;
ifp–>if_name    = ”xx”;
ifp–>if_init    = xx_init;
ifp–>if_output  = xx_output;
ifp–>if_ioctl   = xx_ioctl;
ifp–>if_type    = IFT_XX;
ifp–>if_addrlen = ??;
ifp–>if_hdrlen  = ??;
/* packet filter support */
ifp–>if_flags |= IFF_BPF;   /* Enable bpf support */
ifp–>if_tap = NULL;       /* Inactive tap filter */
ifp–>if_arpres = arpresolve;
ifp–>if_arprev = revarpinput;
ifp–>if_arpinput = arpinput;
if_attach(ifp);

}

Communicating with the IP
The TCP/IP and NIDs are different kernel extensions that are loaded separately. In order to
communicate with each other, these kernel extensions use the functions and data structures
of the base kernel extension. These kernel services include:

• Address Family Domain kernel services

• Network Interface Device kernel services

• Routing and Interface Address kernel services.

Some of these services are:

add_input_type
Adds an interface type to the Network Input Table.

del_input_typeDeletes an input type from the Network Input Table.

find_input_type
Finds an input type from the Network Input Table.

if_attach Adds a network interface to the network interface list.

if_detach Deletes a network interface from the network interface list.

ifunit Returns the ifnet structure for the requested interface.

ifa_ifwithaddr Locates an interface based on a complete interface address.

ifa_ifwithdstaddr
Locates the point-to-point interface with a given destination address.

ifa_ifwithnet Locates an interface on a specific network.

if_down Marks an interface as down.

if_nostat Changes statistical elements of the interface array to zero in preparation for
an attach operation.
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Outgoing Packets
For the outgoing packets, the routing code in the IP layer determines the correct NID to use
by scanning the linked list of ifnet structures. The routing code uses Interface Address
kernel services like ifa_ifwithaddr, ifa_ifwithdstaddr, and ifa_ifwithnet to locate the
appropriate ifnet structure. For more detailed information on kernel services, see the
AIX Version 4.1 Technical Reference, Volume 5: Kernel and Subsystems.

The ifnet structure is initialized by each NID during its initialization phase. Once the
appropriate NID is located, the IP layer calls the output routine of the NID:

(*ifp–>if_output)(ifp, m, dst, rt)
struct ifnet *ifp;
struct mbuf  *m;
struct sockaddr *dst;
struct rtentry *rt;

ifp A pointer to the ifnet structure. This is required as there may be multiple
adapters of the same type that are serviced by the same NID. The
if_unit field in the ifnet structure is used to determine the appropriate
adapter.

m The mbuf chain containing the data packet. This mbuf chain is freed by the
NID or the device handler.

dst A pointer to the socket address of the destination of the packet.

rt A pointer to a routing table entry for this packet. A null value indicates there
is no routing table entry.

The following Data Packet for Ethernet figure illustrates the modifications to an outgoing
packet from the socket layer to the Ethernet device handler.
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The output routine provides no guarantee for the transmission of packets. There is no
acknowledgment of a successful delivery. The errors returned are those that can be
detected immediately, such as the interface is down, no memory buffers, and address family
not supported. If the error is detected after the call is returned, the protocol is not notified.

The following sample code shows typical code for an output routine:

/*************************************************************************
 * xx_output() – output packet to network 
 ************************************************************************/
xx_output(ifp, m, dst, rt)
register struct ifnet *ifp;
register struct mbuf *m;
struct sockaddr_xx *dst; 
struct rtentry *rt;
{

register struct xx_softc *xxp;
register struct xx_hdr *hdrp;
struct xx_hdr hdr;
register int hdr_len;
register int error = 0;
struct mbuf *mcopy = 0;

if ((ifp–>if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
error = ENETDOWN;
++xxp–>if_snd.ifq_drops;
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goto out;
}

if ((xxp–>if_flags & IFF_SIMPLEX) && (m–>m_flags & M_BCAST))
mcopy = m_copym(m, 0, (int)M_COPYALL, M_DONTWAIT);

xxp = &xx_softc[xxp–>if_unit];

switch (dst–>sa_family) {
/*
  call necessary ARP resolve routine or any other resolve
  here
*/
hdrp = (struct xx_hdr *)&hdr;
break;

}

        /*
         * Add local net header.  If no space in first mbuf,
         * allocate another.
         */

hdr_len = xx_len;
M_PREPEND(m, hdr_len, M_DONTWAIT);
if (!m) {

error = ENOBUFS;
++xxp–>if_snd.ifq_drops;
goto out;

}

/* copy in the local net  headers */
bcopy((caddr_t)hdrp, mtod(m, caddr_t), hdr_len);

m = m_collapse(m, xx_MAX_GATHERS);
if (!m) {

error = ENOBUFS;
++xxp–>if_snd.ifq_drops;
goto out;

}

if (m–>m_flags & M_BCAST|M_MCAST)
++xxp–>if_omcasts;

xxp–>if_obytes += m–>m_pkthdr.len;
if (!xxp–>nddp) {

m_freem(m);
++xxp–>if_oerrors;

/*
   call the Network Device Driver’s output function
*/
} else if ((*(xxp–>nddp–>ndd_output))(xxp–>nddp, m)) {

m_freem(m);
++xxp–>if_oerrors;

}
if (mcopy)

(void) looutput(xxp, mcopy, dst, rt);
++xxp–>if_opackets;
m = 0;

    out:
if (m)
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m_freem(m);
return (error);

}

Communicating with the Device Handler
The communications device handler interface kernel services provide a standard interface
between NIDs and AIX communication device handlers.

The ns_alloc and ns_free services allocate and relinquish use of a Network Device Driver,
respectively.  Once the NDD has been allocated, outgoing packets to the NDD can be sent
by calling the driver’s output function found in the ndd_output field of the ndd structure.
This structure is returned after a successful call to ns_alloc.

Note: ns_alloc and ns_free are described in the appendix of this book.

Output Data
The output routine for NID is called by the network layer (IP). The NID transmits the data by
calling the function found in ndd_output of the ndd structure. This is shown in the
xx_output routine in the sample code starting on page 12-27.

Before calling the ndd_output function, the output routine might have to build the
corresponding link-level header. If the output routine is called by IP, it is supplied with a
destination address in a sockaddr structure. If the sockaddr address family is supported by
the NID, the NID has to map this sockaddr into a link-level address.

This mapping may involve a lookup, or it may require more involved techniques like an
Address Resolution Protocol (ARP). For more information on ARPs, see  the “Translating
Network Addresses to Hardware Addresses” section on page 12-29.

It may not be always necessary to build the link-level header. For example, a point-to-point
link may not need a link-level header.

The ndd_output function pointer requires two parameters. The first is a pointer to the ndd
structure of which ndd_output is a field.  The second is a pointer to the mbuf with contains
the data to transmit. The first mbuf in each packet chain will be of the M_PKTHDR format
(see /usr/include/sys/mbuf.h)  Multiple mbufs may hold the packet and will be linked to
data the m_next field. ndd_output points to a device driver entry point similar to the
following:

xx_output(p_ndd, p_mbuf)
ndd_t       *p_ndd;  /* pointer to the ndd in the dev_ctl area */
struct mbuf *p_mbuf; /* pointer to a mbuf (chain) */

This function returns a zero after successful transmission. If a nonzero return is
encountered, it is the NIDs responsibility to free the mbufs.

Translating Network Addresses to Hardware Addresses
The network layer provides the NID with the destination network address. If it is not a
point-to-point network the NID must translate this network address into a destination
hardware address to perform a successful transmission of the packet.

For the existing AIX NIDs, different mechanisms are used for different types of NIDs. For
Ethernet, Token Ring, 802.3, and Fiber Distributed Data Interface (FDDI), the Address
Resolution Protocol (ARP) is used.

The ARP is defined in the RFC826. The ARP provides a dynamic address-translation
mechanism for networks that support broadcast or multicast communication.

The idea of ARP is simple. Whenever a packet needs to be sent out, the NID calls the ARP
resolver routine to get the hardware address of the destination. If the address is already
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known (in the cache translation table) then that value is returned. If not, the packet is
queued and an ARP request is broadcast on the network. The request has the network
address of the required destination host.

When the correct destination host receives the ARP request, it sends back an ARP reply
providing the requester with the hardware destination address. The original sender host can
then update its cache translation table and can transmit the queued-up output packet.

The resolver routines for the previously mentioned networks (Ethernet, Token Ring, 802.3,
and FDDI) for the Internet address family are provided by the corresponding NID kernel
extension.

The resolver routine is specified by the NID during configuration. The if_arpres field of
the ifnet structure is assigned a pointer to the NID specific ARP resolution routine before
calling if_attach kernel service. The resolver routine will then be called by the IP layer at the
appropriate time by looking at the ifnet structure for that particular interface.

The resolve routine resolves the IP address into the corresponding hardware address. If
successful, addr_hw points to the hardware address, and a value of zero is returned to the
caller.

If there is no entry in the ARP table (arptab), one needs to be created. An entry is created
with the network address of sock_addr_net and a broadcast ARP request is sent out (using
xx_arpwhohas). The mbuf structure containing the data is held until the address is
resolved. A value of 1 is returned to the caller. The response for the ARP request is
eventually received by the xx_arpinput routine. This routine would update the ARP table
and send out the held packet.

(*resolve)(ac, m, sock_addr_net, addr_hw)
struct arpcom *ac;
struct mbuf *m;
struct in_addr *sock_addr_net;
caddr_t *addr_hw;

Based on the interface type of the resolver, the addr_hw parameter has different semantics:

Ethernet addr_hw is used as type struct ether_header *eh. It is used to return
the value of the Ethernet address.

Token-ring (802.5)
addr_hw is used as type struct ie5_mac_hdr *macp.  It completes the
MAC and LCC  headers.

802.3 addr_hw is used as type struct ie3_mac_hdr *macp.  It completes the
MAC and LCC  headers.

FDDI addr_hw is used as type struct fddi_mac_hdr *macp.  It completes
the MAC and LCC  headers.

The ARP input routine is specified by the NID during configuration. The if_arpinput field
of the ifnet structure is assigned a pointer to the NID specific ARP resolution routine
before calling the if_attach kernel service.  The ARP input routine will then be called by the
receive function of the interface demuxer at the interrupt level.

For Local Area Networks, several resolver and arp input routines are present with the NIDs
provided with the system. These NIDs, in /usr/lib/drivers, are for the following interfaces:

if_en Standard Ethernet and IEEE 802.3 Ethernet NID

if_fd FDDI NID

if_tr IEEE 802.5 token-ring NID
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If you choose to use the arp routines provided with the system instead of writing your own,
use the following values for the if_arpres and if_arpinput fields of the ifnet structure:

Interface Type if_arpres Value if_arpinput Value

Standard Ethernet arpresolve arpinput

FDDI fddi_arpresolve fddi_arpinput

802.5 ie5_arpresolve ie5_arpinput

802.3 arpresolve arpinput

The whohas routine broadcasts an ARP request packet asking who has the sock_addr_net
Internet Address.

(*whohas)(ac, sock_addr_net)
struct arpcom *ac;
struct in_addr *sock_addr_net;

The arptfree routine frees any ARP table entry specified by *ac. Any mbuf chain of data
associated with this arptab entry and held for future transmission, is also freed. (See the
previous discussion of the resolve routine, about one page earlier, in this same section.)

(*arptfree)(at)
struct arptab *at;

Handling NID Specific ioctl Calls
The NID supports at least the following ioctl commands:

SIOCSIFADDR Sets the Network Interface address.

The SIOCIFADDR command does not update the interface address
list. The address list is updated by the network (for example,
TCP/IP) layer. See the ifaddr structure on page 12-37 for more
information.

The SIOCIFADDR only adds the IP address to the arpcom
structure for the address in the AF_INET domain.

SIOCSIFFLAGS Sets interface flags.

The SIOCSIFFLAGS command modifies the if_flags field in the
ifnet structure for this NID. The different flags that are stored in the
if_flags field are as follows (also see the net/if.h header file):

SIOCIFDETACH Calls the ns_free function to deallocate the given device driver.

IFIOCTL_ADD_FILTER Calls the ns_add_filter CDLI service to add the given filter to the
device driver

IFIOCTL_DEL_FILTER Calls the ns_del_filter CDLI service to remove the given filter

SIOCADDMULTI Adds a multicast address. The IOCTL must support subfunctions for
adding a multicast address and for enabling a multicast address.

SIOCDELMULTI Deletes a multicast address. The IOCTL must support subfunctions
for deleting a multicast address and for disabling all multicasts.

The following sample code shows an IOCTL routine:

xx_ioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
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{
register struct ifaddr *ifa = (struct ifaddr *)data;
register struct xx_softc *xxp = &xx_softc[ifp–>if_unit];
int error = 0;
struct timestruc_t ct;

if (!xxp–>nddp) {
return(ENODEV);

}

switch (cmd) {
    case SIOCIFDETACH:

ns_free(xxp–>nddp);
xxp–>nddp = 0;
break;

    case IFIOCTL_ADD_FILTER:
{
ns_8022_t *filter;
ns_user_t *user;

filter = &((struct if_filter *)data)–>filter;
user = &((struct if_filter *)data)–>user;
error = ns_add_filter(xxp–>nddp, filter, sizeof(*filter), 

user);
if (error)

bsdlog(LOG_ERR, 
   ”if_fd: ns_add_filter() failed with %d return code.\n”,
      error);

break;
}

    case IFIOCTL_DEL_FILTER:
ns_del_filter(xxp–>nddp, (ns_8022_t *)data, sizeof(ns_8022_t));
break;

    case SIOCSIFADDR:
                switch (ifa–>ifa_addr–>sa_family) {

    case AF_INET:
((struct arpcom *)ifp)–>ac_ipaddr =

IA_SIN(ifa)–>sin_addr;
break;

    default:
break;

}
fd_init();
ifp–>if_flags |= IFF_UP;
curtime(&ct);
ifp–>if_lastchange.tv_sec = (int)ct.tv_sec;
ifp–>if_lastchange.tv_usec = (int)ct.tv_nsec / 1000;
break;

    case SIOCSIFFLAGS:
fd_init();
break;

    case SIOCADDMULTI:
{
register struct ifreq *ifr = (struct ifreq *)data;
void xx_map_ip_multicast();
char addr[6];

/*
 * Update our multicast list.
 */
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switch(driver_addmulti(ifr, &(xxp–>fd_ac), 
xx_map_ip_multicast, &error, addr)) {

    case ADD_ADDRESS: 
error = (*(xxp–>nddp–>ndd_ctl))

(xxp–>nddp, NDD_ENABLE_ADDRESS, addr,
FDDI_ADDRLEN); 

if(error) {
int rc;
driver_delmulti(ifr, &(xxp–>fd_ac), 

xx_map_ip_multicast, &rc, addr);
}
break;

      
    case ENABLE_ALL_MULTICASTS: 

error = (*(xxp–>nddp–>ndd_ctl))
(xxp–>nddp, NDD_ENABLE_MULTICAST, addr,

FDDI_ADDRLEN);
if(error) {

int rc;
driver_delmulti(ifr, &(xxp–>fd_ac), 

xx_map_ip_multicast, &rc, addr);
}
break;

    case 0:
/* address already enabled */
break;

    case –1:
      /* error */

break;
}
break;
}

    case SIOCDELMULTI:
{
register struct ifreq *ifr = (struct ifreq *)data;
void xx_map_ip_multicast();
char addr[6];
/*
 * Update our multicast list.
 */
switch(driver_delmulti(ifr, &(xxp–>fd_ac), 

xx_map_ip_multicast, &error, addr))
{
    case DEL_ADDRESS:
        error = (*(xxp–>nddp–>ndd_ctl))

(xxp–>nddp, NDD_DISABLE_ADDRESS, addr,
FDDI_ADDRLEN); 

        break;
      
            case DISABLE_ALL_MULTICASTS: 

      error = (*(xxp–>nddp–>ndd_ctl))
(xxp–>nddp, NDD_DISABLE_MULTICAST, addr,

FDDI_ADDRLEN); 
      break;
    case 0:

/* address still in use */
      break;
    case –1:
      /* error */

break;
 }
 break;

      }
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    default:
error = EINVAL;

}

return (error);
}

Two kernel services have been added to help with multicast addressing.  They are
driver_addmulti to add multicast addresses and driver_delmulti to delete multicast
addresses.

driver_addmulti(ifr, *ac, func, error, mac_address)
struct ifreq *ifr; 
struct arpcom *ac; 
void func();
int *error; 
char *mac_address;

The func parameter above is a pointer to a user defined routine in the NID that maps the
multicast address.The following is an example of such a routine:

void xx_map_ip_multicast(struct sockaddr_in *sin, u_char *lo,
u_char *hi)
{
if (sin–>sin_addr.s_addr == INADDR_ANY) {

/*
* An IP address of INADDR_ANY means listen to all
* of the xx multicast addresses used for IP.
* (This is for the sake of IP multicast routers.)
*/
bcopy(xx_ipmulticast_min, lo, 6);
bcopy(xx_ipmulticast_max, hi, 6);

} else {
xx_MAP_IP_MULTICAST(&sin–>sin_addr, lo);
bcopy(lo, hi, 6);

}
}

The function driver_delmulti has the same parameters.

driver_delmulti(ifr, *ac, func, error, mac_address)
struct ifreq *ifr; 
struct arpcom *ac; 
void func();
int *error;  
char *mac_address;

Terminating
The IOCTL SIOCIFDETACH discussed in “Handling NID Specific IOCTL Calls”, on page
12-31, supports the termination of the NDD and corresponding NID.

NID and ARP Data Structures
This section lists data structures used for NID and ARP. The following NID Data Structure
Relationships figure shows the relationships between various NID and ARP data structures.
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NID Data Structure Relationships
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xx_softc
The xx_softc structure shows software status and is an internal structure of the NID. This is
a starting point for locating the address of other data structures for the NID.

struct xx_softc {
    struct arpcom  xx_ac;  /* common part                 */
    struct  ndd    *nddp;  /* ptr to device driver struct */
}

arpcom
The arpcom structure is a network common structure. It is shared between the NID and the
address resolution code. This is the first element in the softc structure.

struct arpcom {
   struct ifnet ac_if;
   u_char ac_hwaddr[MAX_HWADDR];
   struct in_addr ac_ipaddr;
   struct driver_mult *ac_multiaddrs; /* Lock for walking list */
                                      /* of multicast addrs.   */
};

ifnet
The ifnet structure is the Network Interface Table. It has the following types of fields:

• Interface identifier (if_name, ...)
• Interface properties (if_mtu, if_flags, ...)
• Interface routines (if_output, if_ioctl, ...)
• Interface statistics (if_ipackets, if_opackets, if_ierrors, ...)

It also maintains a pointer to the linked list interface addresses (if_addrlist) for the interface.
The ifnet structures for the different interfaces are in a linked list (if_next). The following
code sample shows the ifnet structure:
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 struct ifnet {
char *if_name; /* name, e.g. ‘‘en’’ or ‘‘lo’’ */
short if_unit; /* sub–unit for lower level driver */
u_long if_mtu; /* maximum transmission unit */
u_long if_flags; /* up/down, broadcast, etc. */
short if_timer; /* time ’til if_watchdog called */
int if_metric; /* routing metric (external only) */
struct ifaddr *if_addrlist; /* linked list of addresses per if */

/* procedure handles */
int (*if_init)(); /* init routine */
int (*if_output)(); /* output routine (enqueue) */
int (*if_start)(); /* initiate output routine */
int (*if_done)(); /* output complete routine */
int (*if_ioctl)(); /* ioctl routine */
int (*if_reset)(); /* bus reset routine */
int (*if_watchdog)(); /* timer routine */

/* generic interface statistics */
int if_ipackets; /* packets received on interface */
int if_ierrors; /* input errors on interface */
int if_opackets; /* packets sent on interface */
int if_oerrors; /* output errors on interface */
int if_collisions; /* collisions on csma interfaces */

/* end statistics */
struct ifnet *if_next;
u_char if_type; /* ethernet, tokenring, etc */
u_char if_addrlen; /* media address length */
u_char if_hdrlen; /* media header length */
u_char if_index; /* numeric abbreviation for this if  */

/* SNMP statistics */
struct timeval if_lastchange; /* last updated */
int if_ibytes; /* total number of octets received */
int if_obytes; /* total number of octets sent */
int if_imcasts; /* packets received via multicast */
int if_omcasts; /* packets sent via multicast */
int if_iqdrops; /* dropped on input, this interface */
int if_noproto; /* destined for unsupported protocol */
int if_baudrate; /* linespeed */

/* stuff for device driver */
        dev_t   devno;                  /* device number */
        chan_t  chan;                   /* channel of mpx device */

struct in_multi *if_multiaddrs; /* list of multicast addresses */
int (*if_tap)(); /* packet tap */
caddr_t if_tapctl; /* link for tap (ie BPF) */
int (*if_arpres)(); /* arp resolver routine */
int (*if_arprev)(); /* Reverse–ARP input routine */
int (*if_arpinput)(); /* arp input routine */
struct ifqueue {

struct mbuf *ifq_head;
struct mbuf *ifq_tail;
int ifq_len;
int ifq_maxlen;
int ifq_drops;

} if_snd; /* output queue */
simple_lock_data_t if_slock; /* statistics lock */
simple_lock_data_t if_multi_lock;

};



12-37Network Device Driver

ifaddr
The ifaddr structure contains information about one interface address. The structures are
maintained by the different address families (for example, Internet, osi, and xns). They are
allocated and attached by the address families, and not by the NID. All the addresses for an
interface are linked so that they are easy to locate.

struct ifaddr {
struct sockaddr *ifa_addr; /* address of interface */
struct sockaddr *ifa_dstaddr; /* other end of p–to–p link */

#define ifa_broadaddr ifa_dstaddr /* broadcast address interface */
struct sockaddr *ifa_netmask; /* used to determine subnet */
struct ifnet *ifa_ifp; /* back–pointer to interface */
struct ifaddr *ifa_next; /* next address for interface */

#ifdef _KERNEL
void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);

#else
void (*ifa_rtrequest)(); /* check or clean routes (+ or –)’d */

#endif
struct rtentry *ifa_rt; /* ??? for ROUTETOIF */
u_short ifa_flags; /* mostly rt_flags for cloning */
u_short ifa_llinfolen; /* extra to malloc for link info */

};

ifreq
The ifreq (interface request) structure is used for socket IOCTLs. All interface IOCTLs must
have parameter definitions that begin with ifr_name. The remainder can be
interface-specific.

struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ]; /* if name, e.g. ”en0” */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
long ifru_flags;
int ifru_metric;
caddr_t ifru_data;
short ifru_mtu;

}

arptab
The arptab (ARP table entries) structures contain the network address to link-layer address
translation. The table is maintained by the ARP routines.

The entries in this table are hashed for fast retrieval. The table is divided into ARPTAB_NB
buckets, each of size ARPTAB_BSIZ. The network address entry to be stored is hashed
based upon its at_iaddr value into the appropriate bucket. To work on this table,
ARPTAB_HASH and ARPTAB_LOOK are defined.
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struct  arptab {
struct in_addr at_iaddr;/* internet address */
u_char hwaddr[MAX_HWADDR];/* hardware address */
u_char at_timer;/* minutes since last reference */
u_char at_flags;/* flags */
struct mbuf *at_hold;/* last pkt til resolved/timeout */
struct ifnet *at_ifp;/* ifnet assoc with entry */
union if_dependent if_dependent;/* hdwr dependent info */

};

arpreq
Use the arpreq (ARP request from user) structure to initiate a socket ioctl request.

struct arpreq {
struct sockaddr arp_pa;/* protocol address */
struct sockaddr arp_ha;/* hardware address */
int arp_flags;/* flags */
u_short at_length;/* length of hdwr addr */
union if_dependent ifd;/* hdwr dependent info */
u_long ifType;/* interface type */

}

Include Files
The include files for the data structures include:

net/if.h
net/if_arp.h
sys/mbuf.h
sys/socket.h
sys/devinfo.h
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Tracing and Debugging for NIDs
The trace tool is useful for debugging the NID kernel extension. It is also a useful
mechanism for performance analysis and tuning. The tracing code has a small overhead, so
the system performance is minimally altered by using tracing code. To add trace code, see
the chapter on the trace facility in AIX Version 4.1 General Programming Concepts
Volume 2: Debugging Programs  and “Performance Tracing” on page 14-61. The process of
tracing is described in the following paragraphs.

Each logical module inside the kernel and kernel extension is allocated a unique hook ID.
For example:

• HKWD_SOCKET for the socket module

• HKWD_MBUF for the mbuf module

• HKWD_IFEN for the Ethernet NID.

• HKWD_IFFD for the FDDI NID

• HKWD_IFET for the Ethernet 802.3 NID

• HKWD_IFTR for the Token Ring 802.5 NID

• HKWD_IFSL for the SLIP NID

For each of the hook IDs, there are sub-hook IDs for the procedures contained in the related
modules.

For example, for the Ethernet NID output routine, the sub-hook IDs are hkwd_output_in
and hkwd_output_out. A new kernel extension can use tracing by allocating itself a new
unique hook ID which does not have the same value as an existing hook ID. A combination
of hook ID and sub hook ID is used to create a unique trace event in the trace log.

For example, at the beginning of the Ethernet ARP resolve routine, there is the tracing call:

TRCHKT(HKWD_IFEN | hkwd_output_in)

Start tracing by using the trace command. Stop it by calling trcstop. Process the trace log
by using the trcrpt command.

The net_error kernel service makes a tracing call to trace the error generated.

TRCHKL1(HKWD_NETERR | error_code, ifp)

Configuration Method for NID
Since NID is a dynamically loadable kernel extension, it has to be loaded by an application
which is called as a configuration method. For the existing NID of AIX this is achieved using
the ifconfig command.

To add your own NID used by AIX TCP/IP, create a configuration method that loads your
own NID. This configuration method will be similar to ifconfig.

The configuration method uses the sysconfig subroutine to load, unload, and configure the
AIX NID.
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Chapter 13. Network Interfaces and Protocols

AIX� Version 4.1 provides two standard user application interfaces to the network: sockets
and STREAMS. The figure CDLI Device Driver Structure, on page 12-1, graphically displays
the� network interface architecture.

Network device drivers are not required to support the socket and STREAMS interfaces
directly. Instead device drivers interface with kernel services which provide the upper layer
support. Collectively these kernel services are called the Common Data Link Interface
(CDLI).  Nor are device drivers required to support direct user access to the driver. Raw
socket and STREAMS interfaces are provided for this purpose. Because device drivers only
interface with well defined kernel  services, this architecture greatly simplifies the writing and
porting of network device drivers.

AIX� � Version 4.1 supports user written STREAMS and socket network protocols. For the
STREAMS user, both a tli and an xti application library is provided along with the OSF/ 1.2
STREAMS system call framework. The xti application interface is X/Open compliant.
STREAMS network protocols written to the TPI (Transport Provider Interface) should be
able to directly link into the STREAMS application interface from below. A Data Link Provider
Interface (DLPI) STREAMS module is provided to connect STREAMS-based protocols with
network device drivers. In general, STREAMS protocols should not have to make direct calls
to either CDLI or the network device driver. For socket users, AIX� � Version 4.1 offers a
standard BSD socket framework with a set of kernel services which permit users to
dynamically add both communication domains and new protocol switch entries to an existing
communications domain, but this feature is currently supported only for the AF_INET
address family. In addition, AIX  exports a number of low level socket calls such as
sbappend, sbdrop and sbreserve which are required by socket based protocols. With these
services, user written socket based network protocols should be able to directly link into the
socket application interface from below. The standard BSD network interface layer (ifnet) is
provided to connect socket based protocols with network device drivers. In general, socket
based protocols should not have to make direct calls to either CDLI or the network device
driver.

Finally, both network device drivers and network protocols are implemented as loadable
kernel extensions. Special commands, (such as strload for STREAMS) or special user
written commands (similiar to ifconfig for sockets) accomplish the loading of these kernel
extensions.

Detailed Network Interfaces

STREAMS User Interfaces
Both the Transport Layer Interface (TLI) and the X/Open Transport Interface (XTI) define a
transport service interface.  The TLI and XTI implementations are limited to TCP/IP.  TLI and
XTI are accessed through a set of library subroutines for the C programming language.
These libraries access the kernel through STREAMS messages.

TLI and XTI provide both a connection mode and a connectionless mode of transport
services.  A transport endpoint specifies a communication path between the transport user
and the transport provider.  A single transport endpoint may not support both modes of
service simultaneously.
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TLI and XTI support both synchronous and asynchronous execution modes for handling
asynchronous events.  In synchronous mode, the user program is blocked until a specific
event has occurred.  In asynchronous mode, the user process is not blocked and is notified
when the specific event has occurred.

Both TLI and XTI support a rich option management facility to provide negotiation.
debugging, graceful shutdown, and buffer management functionalities.

The TLI implementation is based on AT&T SVR4 (System V release 4).  The transport
provider driver, XTISO, and the associated STREAMS module, timod, are based on the
Transport Provider Interface (TPI) version 1.5.  The XTI implementation complies with the
XPG4 standards defined by X/Open.

The user can also directly call the STREAMS getmsg and  putmsg system calls to read
from and write to the stream-head message queue.

For more information see “xtiso STREAMS Driver” and “dlpi STREAMS Driver” in AIX
Version 4.1 Technical Reference, Volume 4: Communications , “Transport Service Library
Interface Overview” in AIX Version 4.1 Communications Programming Concepts, and the
reference information on getmsg and putmsg in AIX Version 4.1 Technical Reference,
Volume 4: Communications.

Protocol Interfaces via DLPI
The DLS provider is implemented as a style 2 provider which supports the connectionless
mode of communication.  The connectionless DLPI service supports local management
primitives and data-transfer primitives.  Local management primitives allow the DLS user to
query and control the DLS provider. Data-transfer primitives enable the DLS user to
communicate with a peer DLS user.  Each local management primitive and data-transfer
primitive is implemented as a STREAMS message.  Normal primitives are implemented as
M_PROTO messages.  High-priority interface acknowledgement primitives are implemented
as M_PCPROTO messages.

A style 2 DLS provider can support several physical points of attachment (PPA).   The PPA
is used to identify one of several of the same type of interface in the system.  A DLS user
must explicitly identify the PPA using the DL_ATTACH_REQ primitive.  For more
information, see the DL_ATTACH_REQ  primitive manpage.

The DLS provider has been implemented to allow the DLS user the capability of specifying
the packet format.  Using the M_IOCTL STREAMS message, the DLS user can specify the
packet format.  If the DLS user does not specify the packet format, the default is
NS_PROTO.  The packet formats are defined in the ns_user structure article.

In order for the DLS provider to generically support all interface types, the DLS provider has
been implemented so the DLS user can specify address resolution routines.

For more information, see the reference articles on the DLPI primitives (such as
DL_ATTACH_REQ) in AIX Version 4.1 Technical Reference, Volume 3: Communications
and AIX Version 4.1 Technical Reference, Volume 4: Communications.
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Writing or Porting STREAMS Network Protocols
This section:

• Lists and explains DLPI interfaces supported by AIX

• Details the AIX interpretations of source and destination address

• Provides sample code for packet format setting

• Points to demuxer docs

DLPI Interfaces Supported by AIX
DLPI supports CDLI-based network interfaces in a generic fashion.  This support is enabled
by allowing the DLPI user to specify the particular packet format necessary for the
transmission media over which the stream is created. This generic interface support allows
new CDLI-based device drivers to be added to the operating system without updating the
DLPI driver, but with some modifications in the associated demuxer.

The DLPI user is allowed one packet format specification per stream.  This packet format
must be specified after the attach, and before the bind. Otherwise, an error will be
generated.  The DLPI user can specify one of the following packet formats per stream:
NS_PROTO, NS_PROTO_SNAP, NS_INCLUDE_LLC, and NS_INCLUDE_MAC.  These
packet formats are defined in the /usr/include/sys/cdli.h file.  If the user does not specify a
packet format, the default packet format is NS_PROTO.

For the DL_UNITDATA_IND primitive, DLPI will provide the header information in the
dl_unitdata_ind_t structure.  If the packet format specified is NS_PROTO or
NS_PROTO_SNAP, the MAC and LLC are included in the header, and the data portion of
the message will contain only data.  If the packet format is NS_PROTO, the DLPI header
includes the MAC and LLC without the SNAP.  If the packet format is NS_PROTO_SNAP,
the DLPI header includes the MAC, LLC, and SNAP.  If the packet format specified is or
NS_INCLUDE_MAC, the DLPI header will contain only the destination and source
addresses.  If the packet format is NS_INCLUDE_LLC, only the LLC will be placed in the
data portion of the message.  If the packet format is NS_INCLUDE_MAC, the MAC and LLC
are both placed in the data portion of the message.  Thus, the DLPI user must have
knowledge of the MAC header and LLC architecture for that interface in order to retrieve the
MAC header and LLC from the data portion of the message.

For the DL_UNITDATA_REQ primitive, if the DLPI user had specified either the
NS_PROTO, NS_PROTO_SNAP, or NS_INCLUDE_LLC format, the DLPI user must provide
the destination address and an optional DSAP in the DLPI header. If the DLPI user does not
specify the DSAP, the DSAP specified at bind time will be used. If the DLPI user specifies
the NS_INCLUDE_LLC packet format, the user must include only the LLC in the data
portion.  If the user specifies the NS_INCLUDE_MAC packet format, the DLPI user must
provide the full MAC header, including the LLC, in the data portion of the message.

The DLPI user specifies the packet format via the STREAMS I_STR IOCTL.

See “Obtaining Copies of the DLPI and TPI Specifications”, on page 13-5, for information
on how to get the DLPI specifications.
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AIX Interpretations of Source and Destination Addresses
DLPI source and destination addresses are 6 byte hardware addresses.

TLI and XTI source and destination addresses are specified via the sockaddr_in structure
defined in the /usr/include/netinet/in.h file. This structure requires a family, a port number,
and an IP address.

Protocol Address Resolution 
The DLPI user can provide an address resolution procedure for input and output using the
STREAMS I_STR IOCTL, or the user can rely on the system default address resolution
routines.  AIX provides default address resolution routines that are interface specific.  The
DLPI user must specify the address resolution routine in the ndd structure defined in the
/usr/include/sys/ndd.h file.

AIX STREAMS Loading Convention
The configuration file for DLPI is the /etc/dlpi.conf file.

To load:   strload –f /etc/dlpi.conf

To unload: strload –uf /etc/dlpi.conf

For STREAMS modules and drivers that can be accessed by TLI and XTI, the configuration
file is the /etc/xtiso.conf file.

To load:   strload –f /etc/xtiso.conf

To unload: strload –uf /etc/xtiso.conf

MP Serialization and Locking Options for STREAMS Modules and
Drivers

The STREAMS framework has a special set of data structures and synchronizations that
enable STREAMS-based devices to operate in a multi-threaded environment.

At configuration time, users supply valid synchronization levels for STREAMS modules and
drivers. The synchronization level is specified in the sc_sqlevel member of the strconf_t
structure passed in as an argument into the str_install configuration procedure call.  In
addition, MP-safe and MP-efficient STREAMS drivers and modules are required specify in
the sc_flags member of the strconf_t structure the style of the open routine logically ORed
with STR_MPSAFE.

Valid synchronization levels are:

SQLVL_QUEUE
Queue Level. This synchronization level enables a separate thread of
execution to access either side of the stream simultaneously.This
synchronization level provides the finest degree of parallelization.  If the
user specifies the SQLVL_QUEUE level of synchronization, the user may
need to provide locks to ensure that only one thread executes within a
queue at a time. If the user must provide a locking mechanism, it is
recommended that the user employ the q_lock.

SQLVL_QUEUEPAIR
Queue Pair Level. This synchronization level guarantees that only one
thread of execution can access either queue of the queue pair at a time.

SQLVL_MODULE
Module Level. This level specifies synchronous across all instances of a
module, ensuring no more than one thread of execution through all
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instances of the module at a time.  This is the level of synchronization the
user should select in a non MP-safe STREAMS module.

SQLVL_ELSEWHERE 
Arbitrary Level. A cooperating group of modules, such as a protocol family,
may need to ensure that there is only one thread of execution through the
entire group.  In this case, the module developer provides a unique name
that is used at configuration time. The unique name is specified in the
sc_sqinfo member of the strconf_t structure.

  SQLVL_GLOBAL
Global Level. This synchronization level forces a single thread access
through all streams. This option is normally used only for debugging.  With
this level of synchronization, the user requests a single lock for the entire
streams system. Only one thread at a time may be executing.

  SQLVL_DEFAULT 
Default Level. This synchronization level is defined as SQLVL_MODULE.

TLI and XTI Interface Protocols
The Transport Provider Interface (TPI) is a STREAMS message interface that specifies the
types and allowable sequences of messages passed between the transport user and the
transport provider.  TPI is defined by a set of primitives which are implemented as
STREAMS messages.  These STREAMS messages can consist of M_PROTO,
M_PCPROTO, or M_DATA message blocks. The TLI and XTI libraries are implemented
using TPI primitives.

The TLI module, timod, sits between the stream head and the transport provider and helps
map TLI messages to TPI primitives.  timod passes most messages along unchanged.

Obtaining Copies of the DLPI and TPI Specifications
You can obtain copies of the data link provider interface (DLPI) and transport provider
interface (TPI) specifications electronically or through direct mail.

A postscript file of the DLPI and TPI specifications may be retrieved electronically by
anonymous ftp from the internet host file ftp.ui.org residing at IP address 192.203.65.200
under the pub/osi directory.

To retrieve the postscript DLPI and TPI specifications through anonymous ftp, use the
following example:
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ftp ftp.ui.org
Connected to ftp.ui.org.
220 uiunix FTP server (Version 1.25 Jul 09 1993) ready.
Name (ftp.ui.org:jhaug):anonymous
ftp> user anonymous
331 Guest login ok, send ident as password.
Password: guest
230 Guest login ok, access restrictions apply.
ftp> cd pub/osi
250 CWD command successful.
ftp> bin
200 Type set to I.
ftp> get dlpi.ps     for TPI: ftp> get tpi.ps
200 PORT command succesful.
150 Opening BINARY mode data connection for dlpi.ps (1476915 bytes).
226 Transfer complete.
1476915 bytes received in 440.4 seconds (3.275 Kbyte/s)
ftp> quit
221 Goodbye.

If you do not have access to the internet, you can obtain a copy of the DLPI and TPI
specifications directly from UNIX International through the U.S. Postal Service. The mailing
address of UNIX International is:

UNIX International
Waterview Corporate Center
20 Waterview Boulevard
Parsippany, New Jersey  07054
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Writing or Porting Socket Network Protocols
Socket protocols, including the system provided TCP/IP and XNS protocols, are
implemented as loadable kernel extensions in AIX Version 4.1. The following general
guidelines apply:

• By convention, protocol kernel extensions are installed in the /usr/lib/drivers directory.
Some system utilities may assume that this is the case.

• When building the kernel extension the relevant base system exports must be imported.
The system provided protocols import the following: kernex.exp, syscalls.exp,
sockets.exp and statcmd.exp. The system export files are located in the /usr/lib
directory. These exports should provide all of the services and data structures required to
port standard BSD socket-based protocols.

• If other kernel extensions are using services provided by the new protocol then users
must create an export file and export these services. See /usr/lib/netinet.exp for an
example of a protocol export file.

• Protocol writers must decide how much of the kernel extension to pin. The major
consideration is that the system interrupt handlers will call the protocol’s handler with
interrupts disabled. (By the way, this is not true for the protocol’s fast and slow timers.)
So at minimum, the protocol’s interrupt handler must be pinned. The system provided
socket protocols are pinned in their entirety.

Initialization
There are two phases to socket protocol initialization in AIX. The first phase involves
execution of the kernel extension’s configuration entry point. This function is designated
when the kernel extension is built and is called by the system when the kernel extension is
loaded. This function should perform the following tasks:

• Do any lock initialization required by the protocol in an MP environment.

• Do any pinning of modules or data structures required by the protocol.
• Add the protocol’s communication domain to the system list using the  domain_add

kernel service.  domain_add will call the domain’s initialization function plus inititalization
function of all of the protocol’s listed in the domain’s protocol switch table. The later step
is phase two of protocol initialization. Definitions related to this are in
/usr/include/sys/domain.h and /usr/include/sys/protosw.h

• Register address resolution functions, loopback handlers and address resolution IOCTLs
with the systen using the nd_config_proto kernel service.

This is illustrated in sample code for a socket protocol’s configuration entry point function,
on page 13-15.

The second phase of protocol initialization occurs when the protocol initialization function
is called by domain_add. This is exactly analogous to what happens on BSD systems.
Generally, these initialization procedures should contain all of the protocol initialization
procedures which are not AIX specific.  Protocols being ported from Berkeley systems
will require no changes to their initialization procedures with two exceptions:

• If protocol  interrupts are to be scheduled using the AIX software interrupt facilities, then
this should be initialized at this point. This is done via a call to the netisr_add kernel
service.

• Perform any lock initialization required by the protocol in an MP environment.
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This is illustrated in sample code for a socket protocol’s initialization function, on page
13-16.

After this initialization process, the socket protocol is loaded into the kernel, configured into
the system’s socket framework and initialized. All that remains is for the protocol to notify the
system of the types of network packets it wishes to receive, from which network interfaces
and the format in which packets are to be exchanged with the system. This is accomplished
through a call to the ns_add_filter kernel service. Because AIX supports multiple protocols
concurrently on the same network adapter and because a protocol may not want to receive
packets from all of the network interfaces configured into the system, socket protocols
should perform this registration when an address is bound to a network interface.

This is illustrated in sample code for a socket protocol’s packet registration function, on page
13-17.

Loading
The system provided socket protocols are loaded and configured by the ifconfig command.
Because ifconfig requires prior knowledge of all the communication address families in the
system, it cannot be used to load and configure user written socket protocols. The user must
provide a configuration command. The basic logic of this command should be as follows:

1. Check if the protocol is loaded using the sysconfig kernel service.  If not, load the
protocol using  the sysconfig kernel service.

2. Open a socket.
3. Issue the appropriate socket IOCTL. For additional information, see

/usr/include/sys/ioctl.h and the reference articles for the socket IOCTLs.

Socket-Protocol Interface
The interfaces that a socket protocol must support are described in the protocol switch
structure, defined in /usr/include/sys/protosw.h. These interfaces, along with their call
semantics, are:

void pr_input(defined per communications domain),

int pr_output(defined per communications domain),

void pr_ctlinput(int cmd, struct sockaddr *sa, caddr_t arg)
     /* cmd is one of the PRS commands listed in protosw.h,
        sa is a sockaddr, and
        arg is an optional argument used within
           the protocol family
     */
 

int pr_ctloutput(int req, struct socket *so,int level,
                 int optname,mbuf **optval)
    /* req is a PRCO action listed in protosw.h, 
       so is a socket,
       level is an indication of which protocol layer,
       optname is a protocol dependent request value,
       optval is for return results
    */
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int pr_usrreq(struct socket *so, int req, struct mbuf *m,
              struct mbuf *nam, struct mbuf *control)
    /* so is the socket,
       req is a PRU request listed in protosw.h,
       m is an optional message chain,
       nam is an optional mbuf containing an address,
       control is an optional mbuf containing control information
           void pr_init(void), 
           void pr_fastimo(void), 
           void pr_slowtimo(void),
           void pr_drain(void). 
    */

The socket system calls interact with the protocol solely through the protocol switch
structure.

The pr_init function is called by the system when the protocol is loaded. After this is
accomplished, the system will call the pr_fastimo function on a 200 millisecond timer and
the pr_slowtimo function on a 500 millisecond timer.  Unlike other BSD-based systems, AIX
calls the protocol’s pr_drain functions when the system detects a shortage of network
memory buffers (mbufs).

Protocols pass data among themselves (for example ip to tcp) using the pr_input and
pr_output functions. pr_output moves data towards the network interface and pr_input
moves data towards the socket system call interface. Control information is passed using
the pr_ctlinput and pr_ctloutput functions. Unlike with pr_output, the socket system
routines will pass control data down to the protocols using pr_ctloutput. The getsockopt
and setsockopt socket system calls are implemented in this fashion.

With the two exceptions noted above, all of the socket-to-protocol interfaces in the system
are implemented using pr_usrreq.  The specific call semantics for each socket system call
are as follows:

This is the semantics of the socket system call:

(pr_usrreq)((struct socket *) so, PRU_ATTACH,
(struct mbuf *)0, (struct mbuf *)proto,
 (struct mbuf *)0);

This is the semantics of the bind system call:

(pr_usrreq)((struct socket *) so, PRU_BIND,
    (struct mbuf *)0, nam, (struct mbuf *)0);

This is the semantics of the listen system call:

(pr_usrreq)((struct socket *) so, PRU_LISTEN,
    (struct mbuf *)0, (struct mbuf *)0,
    (struct mbuf *)0);

This is the semantics of the close, disconnect system call:

(pr_usrreq)((struct socket *) so, PRU_DISCONNECT,
    (struct mbuf *)0, (struct mbuf *)0,
    (struct mbuf *)0))

This is the semantics of the close system call:

(pr_usrreq)((struct socket *) so, PRU_DETACH,
    (struct mbuf *)0, (struct mbuf *)0,
    (struct mbuf *)0);

This is the semantics of the soabort system call:
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(pr_usrreq)((struct socket *) so, PRU_ABORT,
    (struct mbuf *)0, (struct mbuf *)0,
    (struct mbuf *)0);

This is the semantics of the accept system call:

(pr_usrreq)((struct socket *) so, PRU_ACCEPT,
    (struct mbuf *)0, nam, (struct mbuf *)0);

This is the semantics of the connect system call:

(pr_usrreq)((struct socket *) so, PRU_CONNECT,
    (struct mbuf *)0, nam, (struct mbuf *)0);

This is the semantics of the socketpair system call:

(pr_usrreq)(so1, PRU_CONNECT2,
    (struct mbuf *)0, (struct mbuf *)so2,
    (struct mbuf *)0);

The semantics for send, sendto, sendmsg, write is one of the following forms:

(pr_usrreq)((struct socket *) so, PRU_SENDOOB,top,
     addr, control);

       /* or   */
(pr_usrreq)((struct socket *) so, PRU_SEND,top, addr, control);

The semantics for receive, recvfrom, recvmsg, read is one of the following forms:

(pr–>pr_usrreq)((struct socket *) so, PRU_RCVOOB, m, 
   (struct mbuf *)(flags & MSG_PEEK), (struct mbuf *)0);

       /* or  */
(pr_usrreq)((struct socket *) so, PRU_RCVD, (struct mbuf *)0,

    (struct mbuf *)flags, (struct mbuf *)0);

This is the semantics of the shutdown system call:

 (pr_usrreq)((struct socket *) so, PRU_SHUTDOWN,
    (struct mbuf *)0, (struct mbuf *)0,
    (struct mbuf *)0);

This is the semantics of the setsockopt system call:

(pr_ctloutput) (PRCO_SETOPT, (struct socket *) so, level,
        optname, &m0);

This is the semantics of the getsockopt system call:

(pr_ctloutput) (PRCO_GETOPT, (struct socket *) so, level,
        optname, mp);

This is the semantics of the ioctl system call:

(pr_usrreq)((struct socket *) so, PRU_CONTROL, 
     (struct mbuf *)cmd, (struct mbuf *)data, (struct mbuf *)0));

This is the semantics of the stat system call:

(pr_usrreq)((struct socket *) so, PRU_SENSE,
    (struct mbuf *)ub, (struct mbuf *)0,
    (struct mbuf *)0));

This is the semantics of the getsockname system call:

(pr_usrreq)((struct socket *) so, PRU_SOCKADDR,
    (struct mbuf *)0, m, (struct mbuf *)0);

This is the semantics of the getpeername system call:
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(pr_usrreq)((struct socket *) so, PRU_PEERADDR,
    (struct mbuf *)0, m, (struct mbuf *)0);

The pr_flags field in the protocol switch table describe basic characteristics of the protocol
and impact the behavior of the socket interface. Valid values for these flags are listed in
/usr/include/sys/protosw.h. If PR_CONNREQUIRED is set then the socket calls will not
attempt to transfer data before a connection is established. The PR_ADDR flag causes
receive data to be preceded by the senders address. The PR_ATOMIC flag causes sends to
be performed in a single protocol send request. The PR_WANTRCVD flag causes the
socket routines to notify the protocol when the user has removed data from the socket
receive queue. The notification is one of the following socket system calls:

(pr–>pr_usrreq)((struct socket *) so, PRU_RCVOOB, m,
                 (struct mbuf *) (flags & MSG_PEEK),
                 (struct mbuf *)0);

(pr_usrreq)((struct socket *) so, PRU_RCVD,
            (struct mbuf *)0, (struct mbuf *)flags, 
            (struct mbuf *)0);

The PR_RIGHTS flag indicates that the protocol supports the passing of access rights.

The Design and Implementation of the 4.3 BSD UNIX Operating System contains additional
information on the socket-to-protocol interface.

Protocol-Socket Interface
The AIX kernel establishes a socket structure (refer to /usr/include/sys/socketvar.h) for all
sockets. This structure contains send and receive buffer queues (so_snd and so_rcv),  a
pointer to the protocol’s switch table (so_proto) and a pointer to the protocol’s control block
(so_pcb). Protocols establish a back pointer to the socket in the control block (for an
example, refer to /usr/include/netinet/in_pcb.h) which completes the cross linkage. The
later three pointers, so_proto, so_pcb and the protocol’s back pointer are established
during the socket system call and the resultant PRU_ATTACH pr_usrreq.  It is through these
components of the socket structure that the system’s protocol-to-socket interface is largely
implemented.

On sending of data, reliable protocols typically use the socket send buffer to hold data until
acknowledgment. Data is copied from the send buffer using m_copy for output. When an
acknowledgement is received the protocol removes data from the send buffer with sbdrop or
sbdroprecord.

On receipt of data, protocols employ the sbappend system services to append data to the
appropriate socket’s receive buffer. Typically, sbappend or sbappendrecord are called
after the protocol checks that enough space is available in the receive buffer. This check is
performed using the sbspace kernel service. sbappendrecord differs from sbappend in
that the data is treated as being the beginning of a new record. Protocols needed to add
either access rights or the sender’s address to the receive data employ the sbappendaddr
or sbappendrights kernel services. For access rights plus data sbappendcontrol should
be used. For sender’s address, plus access rights (optional), plus data sbappendaddr
should be employed. Unlike sbappend or sbappendrecord, these two kernel services
check receive buffer space for the caller.  These system services do not wake up waiting
receivers, so the protocol must issue an sorwakeup.
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The following sample code illustrates adding data to a socket receive buffer:

...
/*
 * Locate pcb for datagram.
 */
nsp = ns_pcblookup(&idp–>idp_sna, idp–>idp_dna.x_port, NS_WILDCARD);
/*
 * Switch out to protocol’s input routine.
 */
nsintr_swtch++;

...
idp_input(m, nsp);

...
idp_input(m, nsp)

struct mbuf *m;
register struct nspcb *nsp;

{
register struct idp *idp = mtod(m, struct idp *);
struct ifnet *ifp = m–>m_pkthdr.rcvif;

...
/*
 * Construct sockaddr format source address.
 * Stuff source address and datagram in user buffer.
 */

...
if ( ! (nsp–>nsp_flags & NSP_RAWIN) ) {

m–>m_len –= sizeof (struct idp);
m–>m_pkthdr.len –= sizeof (struct idp);
m–>m_data += sizeof (struct idp);

}
if (sbappendaddr(&nsp–>nsp_socket–>so_rcv,(struct sockaddr *)&idp_ns,
    m, (struct mbuf *)0) == 0)

goto bad;
sorwakeup(nsp–>nsp_socket);
return;

bad:
m_freem(m);

}

Protocol-Network Interface
In AIX Version 4.1, paths through which socket messages can be sent and received are
configured into the system via network interfaces. Normally, a hardware or pseudo device is
associated with each interface. An interface and its addresses are defined by kernel ifnet
structures (refer to /usr/include/net/if.h). The linked ifnet structures provide a list of socket
interface names and protocol addresses configured in the system. It is through these ifnet
structures that the system’s protocol-to-network interface is largely implemented. This
approach provides the socket protocols with a consistent interface to all network hardware
devices.

Interface properties, including state information, are conveyed to the protocols through the
ifnet flags and maximum transmission unit (mtu) fields. The most important interface flags
and their meanings are:

IFF_UP Interface is up and available for protocol use

IFF_BROADCAST
Interface is broadcast capable
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IFF_LOOPBACK
Interface is a software loopback

IFF_POINTTOPOINT
Interface is a point-to-point link (slip)

IFF_RUNNING Interface resources have been allocated

IFF_NOARP Interface should not use address-resolution protocol

IFF_SIMPLEX Interface cannot hear its own transmissions

IFF_DO_HW_LOOPBACK
Bypass software loopback

IFF_ALLCAST Token-ring only. Sets all rings broadcast.

IFF_SNAP Ethernet only. Interface is 802.3

Protocols pass data to the network interface employing the if_output routine. Each network
interface accepts output datagrams of a specified (via the mtu) maximum length. Output
occurs when if_output is called as follows:

(*ifp–>if_output)(struct ifnet *ifp, struct mbuf *m, struct
sockaddr *dst, struct rtentry *rt)

This has the following parameters:

• ifp is the ifnet pointer for the interface.

• m is the mbuf chain to be sent.

• dst is the destination address.

• rt is an optional routing entry.

The network interface is responsible for encapsulation or decapsulation of any link-layer
protocol headers required to deliver the message. This resolution is accomplished as
follows:

• If dst–>sa_family is equal to AF_UNSPEC, the link-layer header is copied from
dst–>sa_data.  In this case, the protocol provided the link-layer header.

• If dst–>sa_family is equal to AF_UNSPEC, then the network interface calls the protocol’s
address resolution routine. This routine was registered when the protocol was initialized
(see the heading “Initialization” in “Writing or Porting Socket Network Protocols”, on page
13-7).

The format of the call to the protocol’s address resolution routine is:

(*dst–>af_family.resolve) (struct arpcom *ac, struct mbuf *m,
struct sockaddr *dst, caddr_t *llh)

The call has the following parameters:

• m is the mbuf chain to be sent,

• dst is the destination address

• llh is the link layer header to be filled out by the resolution routine. llh must be big
enough to hold the largest possible link layer header.

The network interface module generally maintains the ifnet data structure as part of a larger
data structure (an arpcom) that contains interface specific information.  Thus ac is typically
set to (struct arpcom *) ifp, where ifp is the ifnet pointer for the interface. Note
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that AIX Version 4.1 provides several generic address resolution routines which may be
employed by protocols.

Protocols pass control data to the network interface employing the if_ioctl routine. Most
importantly, interface addresses are set with IOCTL requests. The IOCTL requests to set
interface addresses, (SIOCSIFADDR, SIOCSIFDSTADDR), and to set and delete multicast
addresses (SIOCADDMULTI, SIOCDELMULTI)  generally require work at the interface layer
and should be passed along by the protocols with an if_ioctl. The specific format of this call
is:

(*ifp–>if_ioctl)(struct ifnet *ifp, int cmd, caddr_t data)

This call has the following parameters:

• ifp is the ifnet pointer for the interface.

• cmd is the IOCTL.

• data is the IOCTL data.

Network – Protocol Interface
In AIX Version 4.1, receive data is passed directly from the common data link interface to the
protocols bypassing the network interface layer. The protocol registers with the system the
format and the method of delivery for input packets. This registration is done through the
ns_add_filter kernel service at the protocol’s initialization. By selecting the input packet
format,  the protocol informs the system whether to strip various portions of the link layer
header before receive data is presented. There are two methods of delivery:

• A direct call from the interrupt level to the protocol’s input function

• An enqueue of the packet on the protocol’s input queue and a schedule of the appropriate
software interrupt.

When called directly, the format of the call to the protocol is:

(*protocol_input)(struct ndd *ndd,  struct mbuf *data, caddr_t
*llc, caddr_t *protocookie)

The parameters are:

• ndd is an ndd pointer (see /usr/include/sys/ndd.h) to the receiving interface.

• data is an mbuf pointer to the received data (in the format requested).

• llc is a pointer to the link-layer header of the received packet.

• protocookie is an address passed in by the protocol when it registered to receive
packets of this type. This can be useful for demuxing purposes.

When the packet is enqueued, the protocol receives only the data, in the format requested.

IP Encapsulation/Adding Protocols to the System IP Protocol Switch
The domain_add kernel service can be used for adding an entire communications address
family with its own protocol switch (see the heading “Initialization” in “Writing or Porting
Socket Network Protocols”, on page 13-7). To add entries to an existing protocol switch (for
example,  IP encapsulation or a new protocol within IP) use the protosw_enable kernel
service. To remove the protocol switch use the protosw_disable kernel service. These
services currently only support the AF_INET communications domain. The user is
responsible for pinning the new protocol switch entry.

The following sample code illustrates adding IP protocol switch entries to the system:
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/* set up protocol switch table in internet protocol */
{

extern int protosw_enable();
struct protosw *pr;
struct protosw xns_sw = { SOCK_RAW,0,IPPROTO_IDP,
                       PR_ATOMIC|PR_ADDR,idpip_input,0,
                       nsip_ctlinput,0,0,0,0,0,0,};
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if ( pr != 0 ) {

/* enable the protocol switch so that the IP will handle
 * the incoming xns encapsulating packet and pass along.
 * The route pointers are passed because they are not
 * resolve at load time.
 */
protosw_enable(&xns_sw);
       /* XXX Should check the rc and do ? */

}
}

Sample Socket Protocol
This sample socket protocol includes the following pieces of sample code:

• Configuration entry point function
• Initialization function
• Packet registration function

Sample Socket Protocol’s Configuration Entry Point Function
struct protosw nssw[] = {
{ 0,&nsdomain,0,0, 0,idp_output,0,0, 0, ns_init,0,0,0,},
{SOCK_DGRAM,&nsdomain,0,PR_ATOMIC|PR_ADDR,0,0,idp_ctlinput,idp_ctloutput,
                  idp_usrreq,0,0,0,0,},
{SOCK_STREAM,&nsdomain,NSPROTO_SPP,PR_CONNREQUIRED|PR_WANTRCVD,spp_input,0,
                 spp_ctlinput,spp_ctloutput, spp_usrreq,
                 spp_init,spp_fasttimo,spp_slowtimo,0,},
{ SOCK_SEQPACKET,&nsdomain,NSPROTO_SPP, PR_CONNREQUIRED|PR_WANTRCVD|PR_ATOMIC,
               spp_input,0,spp_ctlinput,spp_ctloutput, spp_usrreq_sp,0,0,0,0,},
{SOCK_RAW,&nsdomain,NSPROTO_RAW,PR_ATOMIC|PR_ADDR,idp_input,idp_output,0,
                                 idp_ctloutput,  idp_raw_usrreq,0,0,0,0,},
{ SOCK_RAW,&nsdomain,NSPROTO_ERROR,PR_ATOMIC|PR_ADDR,idp_ctlinput,idp_output,0,
                               idp_ctloutput,  idp_raw_usrreq,0,0,0,0,},
}
struct domain nsdomain =
    { AF_NS, ”network systems”, 0, 0, 0, 
      nssw, &nssw[sizeof(nssw)/sizeof(nssw[0])],
      0, 0, ns_funnel, ns_funfrc };
. . .
;/*
 *
 * config_ns – entry point for netns kernel extension
 *
 */
config_ns(cmd, uio)

int cmd;
struct uio *uio;

{
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int err, nest;
struct config_proto config_proto;
err = 0;
nest = lockl(&kernel_lock, LOCK_SHORT); 

switch (cmd) {
case CFG_INIT:

/* check if kernel extension already loaded */
if (extension_loaded) 

goto out;
ns_lock_init();

/*
 * pin the netns kernel extension 
*/

 if (err = pincode(config_ns))
goto out; /* Add ns domain */

domain_add(&nsdomain);
config_proto.loop = nsintr;
config_proto.loopq = &nsintrq;

 config_proto.netisr = NETISR_NS;
config_proto.resolve = ns_arpresolve;
config_proto.ioctl = NULL;
config_proto.whohas = NULL;
nd_config_proto(AF_NS, &config_proto);
extension_loaded++;
break;

case CFG_TERM:
default:

err = EINVAL;
}out:
if (nest != LOCK_NEST)

unlockl(&kernel_lock);

return(err);
}

Sample Socket Protocol’s Initialization Function
void
ns_init()
{
        struct timestruc_t ct;
        extern void curtime();

IFQ_LOCK_DECL() ns_broadhost = * (union ns_host *) allones;
ns_broadnet = * (union ns_net *) allones;
nspcb.nsp_next = nspcb.nsp_prev = &nspcb;
nsrawpcb.nsp_next = nsrawpcb.nsp_prev = &nsrawpcb;
nsintrq.ifq_maxlen = nsqmaxlen;
curtime(&ct); /* get the current system time */
ns_pexseq = ct.tv_nsec/1000; /* use microsecond as seq no. */
ns_netmask.sns_len = 6;
ns_netmask.sns_addr.x_net = ns_broadnet;
ns_hostmask.sns_len = 12;
ns_hostmask.sns_addr.x_net = ns_broadnet;
ns_hostmask.sns_addr.x_host = ns_broadhost;
IFQ_LOCKINIT(&nsintrq);
 rtinithead(AF_NS, 16, setnsroutemask);
(void) netisr_add(NETISR_NS, nsintr, &nsintrq, &nsdomain);

}
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Sample Socket Protocol’s Packet Registration Function
/*
 * Generic internet control operations (ioctl’s).
 */
ns_control(so, cmd, data, ifp)

struct socket *so;
int cmd;
caddr_t data;
register struct ifnet *ifp;

{
register struct ifreq *ifr = (struct ifreq *)data;
register struct ns_aliasreq *ifra = (struct ns_aliasreq *)data;
register struct ns_ifaddr *ia;
struct ifaddr *ifa;
struct ns_ifaddr *oia;
struct mbuf *m;
int error, dstIsNew, hostIsNew;

. . .

switch (cmd) { .
 . . case SIOCSIFADDR:

return (ns_ifinit(ifp, ia, (struct sockaddr_ns *)
                               &ifr–>ifr_addr, 1));

. . .
}
. . .

}
/*
 * Initialize an interface’s internet address
 * and routing table entry.
 */
ns_ifinit(ifp, ia, sns, scrub)

register struct ifnet *ifp;
register struct ns_ifaddr *ia;
register struct sockaddr_ns *sns;

{
struct sockaddr_ns oldaddr;
register union ns_host *h = &ia–>ia_addr.sns_addr.x_host;
int error;

. . .
return(ns_ns_filter(ifp));

}
ns_ns_filter(ifp)
struct ifnet    *ifp;
{
        struct ns_user  ns_user;
        struct ns_8022  filter;
        struct ndd      *nddp;

char            ifname[IFNAMSIZ];
int
rc;
/*
 * Alloc the ndd.  Note that we never free it!!
 */
sprintf(ifname, ”%s%d”, ifp–>if_name, ifp–>if_unit);
if (rc = ns_alloc(ifname, &nddp))

return(rc);
/*
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 * Add 802.3 filter. 
 */
bzero(&filter, sizeof(filter));
 filter.filtertype = NS_8022_LLC_DSAP;
filter.dsap = DSAP_XNS;
 ns_user.isr = nsintr;
 ns_user.protoq = &nsintrq;
ns_user.netisr = NETISR_NS;
ns_user.pkt_format = NS_PROTO;
ns_user.ifp = ifp;
rc = ns_add_filter(nddp, &filter, sizeof(filter), &ns_user);
return(rc);

}

Sample Code for Direct Access to Device Driver via STREAMS
Sample client and server source code demonstrating direct user access to device drivers via
STREAMS can be found in directory /usr/sbin/samples/dlpi/*.
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Chapter 14. Debugging Tools

This chapter provides information about the available procedures for debugging a device
driver which is under development. The procedures discussed include:

• Saving device driver information in a system dump, on page 14-1.

• Using the crash command to interpret and format system structures, on page 14-5.

• Using the kernel debugger to set breakpoints and display variables and registers, on
page 14-26.

• Error logging to record device-specific hardware or software abnormalities, on page
14-52.

• Using the trace facility to monitor entry and exit of device drivers and selectable system
events, on page 14-61.

System Dump
The system dump copies selected kernel structures to the dump when an unexpected
system halt occurs, when the reset button is pressed, or when the special system dump key
sequences are entered. You can also initiate a system dump through the System
Management Interface Tool (SMIT).

The dump device can be dynamically configured, which means that either the tape or logical
volumes on hard disk can be used to receive the system dump. Use the sysdumpdev
command to dynamically configure the dump device.

You can also define primary and secondary dump devices. A primary dump device is a
dedicated dump device, while a secondary dump device is shared.

The system kernel dump routine contains all the vital structures of the running system, such
as the process table, the kernel’s global memory segment, and the data and stack segment
of each process.

Be sure to refer to the system header files in the /usr/include/sys directory. The name of
the file tells which structure and associated information it contains. For example, the user
block is defined in sys/user.h. The process block is defined in sys/proc.h.

When you examine system data that maps into these structures, you can gain valuable
kernel information that can explain why the dump was called.

Initiating a System Dump
A system dump initiated by a kernel panic is written to the primary dump device. If you
initiate a system dump by pressing the reset button, with the key in the service position, the
system dump is written to the primary dump device.

Use the special key sequences to determine whether the write of a system dump goes to the
primary dump device or to the secondary dump device. The key must be in the service
position. To write to the primary dump device, use the sequence Ctrl-Alt-NumPad1. To write
to the secondary dump device, use the sequence Ctrl-Alt-NumPad2.

To use SMIT, select Problem Determination from the main menu, then select System
Dump. This presents a menu that allows you to initiate a system dump to either the primary
or secondary device, and manipulate the dump devices and the system dump files.
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If you prefer to initiate the system dump from the command line, use the sysdumpstart
command. Use the –p flag to write to the primary device or the –s flag to write to the
secondary device.

If you want your device to be a primary or secondary device, the driver must contain a
dddump routine. For more information, see the “dddump Entry Point” section in Chapter 4.

Note: The system halts after the system dump completes.

Including Device Driver Information in a System Dump
The system dump is table driven. The two parts of the table are:

master dump table
A master dump table entry is a pointer to a function which is provided by the
device driver. The function is called by the kernel dump routine when a
system dump occurs. The function must return a pointer to a component
dump table.

component dump table
Specifies memory areas to be included in a system dump.

Both the master dump table and the component dump table must reside in pinned global
memory.

When a dump occurs, the kernel dump routine calls the function pointed to in the master
dump table twice. On the first call, an argument of 1 indicates that the kernel dump routine is
starting to dump the data specified by the component dump table.
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On the second call, an argument of 2 indicates that the kernel dump routine has finished
dumping the data specified by the component dump table. The component dump table
should be allocated and pinned during initialization. The entries in the component dump
table can be filled in later. The function pointed to in the master dump table must not attempt
to allocate memory when it is called. The following System Dump Flow figure shows the flow
of a system dump.

System Dump Flow
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crash
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Driver
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Device

Kernel Abend

Key Sequence

In order to have your device driver data areas included in a system dump, you must register
the data areas in the master dump table. Use the dmp_add kernel service to add an entry
to the master dump table. Conversely, use the dmp_del kernel service to delete an entry
from the master dump table. The syntax is as follows:

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

int dmp_add(cdt_func) or int dmp_del(cdt_func)
int cdt * ((*cdt_func) ());

The cdt structure is defined in the sys/dump.h header file. A cdt structure consists of a
fixed-length header (cdt_head structure) and an array of one or more cdt_entry structures.
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The cdt_head structure contains a component name field, containing the name of the
device driver, and the length of the component dump table. Each cdt_entry structure
describes a contiguous data area, giving a pointer to the data area, its length, a segment
register, and a name for the data area. Use the name supplied for the data area to refer to it
when the crash command formats the dump. The following Kernel Dump Image figure
illustrates a dump image.

Component Dump Table – A

Bitmap for 1st data area

1st data area for component A

Bitmap for 2nd data area

2nd data area for component A

...

Component Dump Table – N

Bitmap for 1st data area

1st data area for component N

Bitmap for 2nd data area

2nd data area for component N

Kernel Dump Image

Formatting a System Dump
Each device driver that includes data in a system dump can install a unique formatting
routine in the /usr/adm/ras/dmprtns directory. A formatting routine is a command that is
called by the crash command. The name of the formatting routine must match the
component name field of the corresponding component dump table.

The crash command forks a child process that runs the formatting routines. If a formatting
routine is not provided for a component name, the crash command runs the
_default_dmp_fmt default formatting routine, which prints out the data areas in hex.

The crash command calls the formatting routine as a command, passing the file descriptor
of the open dump image file as a command line argument. The syntax for this argument is
–ffile_descriptor.

The dump image file includes a copy of each component dump table used to dump memory.
Before calling a formatting routine, the crash command positions the file pointer for the
dump image file to the beginning of the relevant component dump table copy.

The dumped memory is laid out in the dump image file with the component dump table and
is followed by a bitmap for the first data area, then the first data area itself. A bitmap for the
next data area follows, then the next data area itself, and so on.
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The bitmap for a given data area indicates which pages of the data area are actually present
in the dump image and which are not. Pages that were not in memory when the dump
occurred were not dumped. The least significant bit of the first byte of the bitmap is set to 1 if
the first page is present. The next least significant bit indicates the presence or absence of
the second page, and so on. A macro for determining the size of a bitmap is provided in
sys/dump.h.

The crash Command
The crash command is a particularly useful tool for device driver development and
debugging, which interprets and formats the system structures. The crash command is
interactive and allows you to examine an operating system image or an active system. An
operating system image is held in a system dump file, either as a file or on the dump device.
When you run the crash command, you can optionally specify a system image file and
kernel file, as shown in the syntax below:

crash [–a] [–i IncludeFile] [ SystemImageFile [ KernelFile ] ]

The default SystemImageFile is /dev/mem and the default KernelFile is
/usr/lib/boot/unix.

To run the crash command on the active system, enter:

crash

Because the command uses /dev/mem, you need root permissions.

To invoke the crash command on a system image file, enter:

crash SystemImageFile

where SystemImageFile is either a file name or the name of the dump device.

Note that by convention the symbol names for function entry points always begin with a .
(period), while symbol names for data areas always begin with an _ (underscore). There is
usually a data address corresponding to an external entry point address, and the od
subcommand displays the data address for a name with no prefix. To be safe, use the
proper prefix when looking for addresses.

Use the –a flag to generate a list of data structures without using subcommands. The
resulting list is large, so you can redirect the output to either a file or to a printer.

Use the –i flag to read the given include file, allowing the print subcommand to output data
according to the include file structures.

You can use a variety of subcommands to view the system structures. These subcommands
can have flags that modify the format of the data. If you do not use a flag to specify what you
want to see, all valid entries are displayed.

crash Subcommands
Once you initiate the crash command, > is the prompt character. For a list of the available
subcommands, type the ? character. To exit, type q. You can run any shell command from
within the crash command by preceding it with an ! (exclamation mark).

Since the crash command only deals with kernel threads, the word thread when used alone
will be used to mean kernel thread in the crash documentation that follows. The default
thread for several subcommands is the current thread (the thread currently running). On a
multiprocessor system, you can use the cpu subcommand to change the current processor:
the default thread becomes the running thread on the selected processor.
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The parameters ProcessT ableEntry and ThreadT ableEntry are used in many subcommands
to indicate a process or thread respectively. These parameters are simply numbers for table
entry indexes which can be displayed using the proc and thread subcommands.

Note that many structures displayed are longer than one screen length. Make sure that you
can halt scrolling if it is important to view something in detail. To do this, use the stty
command:

stty ixon ixany

Use the Ctrl-S key sequence to stop scrolling and Ctrl-Q to resume scrolling.

buf [BufferHeaderNumber]
The buf subcommand displays the system buffer headers. A buffer header contains the
information required to perform block I/O. If you type the buf subcommand with no
BufferHeaderNumber, a summary of the system buffer headers is displayed.

Aliases = bufhdr, hdr

> buf
BUF MAJ  MIN    BLOCK   FLAGS
  0 000a 000b       8   done stale
  1 000a 000b     243   done stale
  2 000a 000b      24   done stale
...

If you type the buf subcommand with a BufferHeaderNumber a single complete header is
displayed:

> buf 3
BUFFER HEADER 3:
 b_forw:  0x014d0528, b_back:   0x014d0160, b_vp:      0x00000000
 av_forw: 0x014d0160, av_back:  0x014d0528, b_iodone:  0x000185f8
 b_dev:   0x000a000b, b_blkno:           0, b_addr:    0x014e9000
 b_bcount:      4096, b_error:           0, b_resid:            0
 b_work:  0x80000000, b_options:0x00000000, b_event:   0xffffffff
 b_start.tv_sec:             0, b_start.tv_nsec:              0
 b_xmemd.aspace_id: 0x00000000, b_xmemd.subspace_id: 0x00000000
 b_flags: read done stale

Refer to the sys/buf.h header file for the structure definition.

buffer [Format] [BufferHeaderNumber]
The buffer subcommand displays the data in a system buffer according to the Format
parameter. When specifying a buffer header number, the buffer associated with that buffer
header is displayed. If you do not provide a Format parameter, the previous Format is used.
Valid options are decimal, octal, hex, character, byte, i–node, directory, and write. The
write option creates a file in the current directory containing the buffer data.

Aliases = b

> buffer hex 3

BUFFER FOR BUF_HDR 3
00000: 41495820  4c564342  00006a66  73000000
00020: 00000000  00000000  00000000  00000000
00040: 00000000  00000000  00003030  30303033
...
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callout
The callout subcommand displays all active entries on the active trblist. When the
time-out kernel extension is used in a device driver, this timer request is entered on a
system-wide list of active timer requests. This list of timer requests is the trblist. Any timer
which is active is on this list until it expires.

Aliases = c, call, calls, time, timeout, tout

>callout
        
TRB’s On The Active List Of Processor 0. 
        
TRB #1 on Active List 
 Timer address......................0x0 
 trb.to_next........................0x0 
 trb.knext..........................0x59aa100
 trb.kprev..........................0x0 
 Thread id (–1 for dev drv).........0xfffffffe 
 Timer flags........................0x12 
 trb.timerid........................0x0  
 trb.eventlist......................0xffffffff 
 trb.timeout.it_interval.tv_nsec....0x0 
 trb.timeout.it_interval.tv_sec.....0x0 
 Next scheduled timeout (secs)......0x2d63f6a8 
 Next scheduled timeout (nanosecs)..0xc849a80  
 Timeout function...................0x8c748 
 Timeout function data..............0x59aa040 
 TRB #2 on Active List 
...

Refer to sys/timer.h for the structure definitions, and to InfoExplorer for a description of the
time-out mechanism.

cm [ThreadT ableEntry SegmentNumber]
The cm subcommand is used by the od subcommand to change the current segment map.
The cm subcommand changes the map of the crash command internal pointers for any
thread segment not paged out, if you specify the thread ThreadT ableEntry and
SegmentNumber. This allows the od subcommand to display data relative to the beginning
of the segment desired. The following example sets the map to thread ThreadT ableEntry 3
to SegmentNumber 2, then displays ten words starting from the offset 0:

Aliases = none

> cm 3 2
t3,2 >> od 0 10
00000000: 00000000 00000000 00000000 00000000
00000010: 00000000 00000000 00000000 00000000
00000020: 00000000 00000000
t3,2 >>
...

Using the cm subcommand without any parameters resets the map of internal pointers.

cpu [ProcessorNumber]
If no argument is given, the cpu subcommand displays the number of the currently selected
processor. Initially, the selected processor is processor 0. If the ProcessorNumber argument
is given, the cpu subcommand selects the specified processor as the current processor. By
extension, this selects the current kernel thread (the running kernel thread on the selected
processor). Processor numbering starts from zero.
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Aliases = none

> cpu
Selected cpu number :  0

dblock [Address]
The dblock subcommand displays the allocated streams data block headers. The address
parameter is required. If the address is not supplied, this command will print an error
message stating that the address is required.  Refer to the sys/stream.h file for the datab
structure definitions. The freep and db_size definitions are not included in
/usr/include/sys/stream.h. These structure members are described here:

freep address of the free pointer

db_size size of the data block

There is no checking performed on the address passed in as the required parameter.  The
dblock subcommand will accept any address.  It is up to the user to be sure that a valid
address is specified.

To determine a valid address run the mblock subcommand.  From the output of the mblock
subcommand,  select a non-zero data block address under the DATABLOCK column
heading.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = dblk

> queue 59d5a74
   QUEUE    QINFO     NEXT  PRIVATE  FLAGS     HEAD   OTHERQ      COUNT
 59d5a74  1884c1c  59d5474  59d5500 0x003e  59e1c00  59d5a00       4096
> mblk 59e1c00
 ADDRESS     NEXT PREVIOUS     CONT     RPTR     WPTR DATABLOCK
 59e1c00        0        0        0  59e2000  59e3000   59e1c44
> dblk 59e1c44
 ADDRESS    FREEP     BASE      LIM   REFCNT     TYPE     SIZE
 59e1c44        0  59e2000  59e3000        1        0     1000

dlock [ThreadIdentifier | –p [ProcessorNumber] ]
Displays deadlock analysis information about all types of locks (simple, complex, and lockl).
The dlock subcommand searches for deadlocks from a given start point. If ThreadIdentifier
is given, the corresponding kernel thread is the start point. If –p is given without a
ProcessorNumber, the start point is the running kernel thread on the current processor. If –p
ProcessorNumber is given, the running kernel thread on the specified processor is the start
point. If no arguments are given, dlock searches for deadlocks among all threads on all
processors.

The first output line gives information about the starting kernel thread, including the lock
which is blocking the kernel thread, and a stack trace showing the function calls which led to
the blocking lock request. Each subsequent line shows the lock held by the blocked kernel
thread from the previous line, and identifies the kernel thread or interrupt handler which is
blocked by those locks. If the information required for a full analysis is not available (paged
out), an abbreviated display is shown; in this case, examine the stack trace to locate the
locking operations which are causing the deadlock. The display stops when a lock is
encountered for a second time, or no blocking lock is found for the current kernel thread.

Aliases = none
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>dlock 00d3f
Deadlock from tid 00d3f. This tid waits for the first line lock,
owned by Owner–Id that waits for the next line lock, and so on...
     LOCK NAME    |   ADDRESS  |  OWNER–ID | WAITING FUNCTION
           lockC1 | 0x001f79e0 | Tid  113d | .lock_write_ppc
                   called from : .times + 0000020c
Dump data incomplete.Only 0 bytes found out of 4.
                   called from : .file + 0000000b
           lockC2 | 0x001f79e8 | Tid   d3f | .lock_write_ppc
                   called from : .times + 000001c8
Dump data incomplete.Only 0 bytes found out of 4.
                   called from : .file + 0000000b

dmodsw
The dmodsw subcommand displays the streams drivers switch table.  The information
printed is contained in an internal structure.  The following members of this internal structure
are described here:

address Address of dmodsw
d_next Pointer to the next driver in the list
d_prev Pointer to the previous driver in the list
d_name Name of the driver
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for driver-level synchronization
d_str Pointer to streamtab associated with the driver
d_sq_level Synchronization level specified at configuration time
d_refcnt Number of open or pushed count
d_major Major number of a driver

The flags structure member, if set, is based one of the following values:

#define Value Description
F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3) open/close parameters
F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall callbacks
F_MODSW_MPSAFE 0x4 Non-MP-Safe drivers need funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h file.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> dmodsw
NAME        ADDRESS     NEXT PREVIOUS FLAG   SYNCHQ STREAMTAB S–LVL COUNT MAJOR
sad         5a0cf40  5a0cf00  5a0c9c0  0x0  5a0ad40   188c600     3     0    12
slog        5a0cf00  5a0cec0  5a0cf40  0x0  5a0ad20   188c8a0     3     0    13
en          5a0cec0  5a0ce80  5a0cf00  0x0  5a0ad00   1893ee0     3     0    27
et          5a0ce80  5a0ce40  5a0cec0  0x0  5a0ace0   1893ee0     3     0    28
tr          5a0ce40  5a0ce00  5a0ce80  0x0  5a0acc0   1893ee0     3     0    29
fi          5a0ce00  5a0cdc0  5a0ce40  0x0  5a0aca0   1893ee0     3     0    30
echo        5a0cdc0  5a0cd80  5a0ce00  0x0        0   18951a0     5     0    31
nuls        5a0cd80  5a0cd40  5a0cdc0  0x0        0   1895190     5     0    32
spx         5a0cd40  5a0cd00  5a0cd80  0x0  5a0ac80   1895d70     3     0    33
unixdg      5a0cd00  5a0ccc0  5a0cd40  0x0  5a0ac60   18a14e0     3     0    34
unixst      5a0ccc0  5a0cc80  5a0cd00  0x0  5a0ac40   18a14e0     3     0    35
udp         5a0cc80  5a0cc40  5a0ccc0  0x0  5a0ac20   18a14e0     3     0    36
tcp         5a0cc40  5a0cb40  5a0cc80  0x0  5a0ac00   18a14e0     3     0    37
rs          5a0cb40  5a0cb00  5a0cc40  0x0        0   18b31d0     5     1    15
pts         5a0cb00  5a0ca40  5a0cb40  0x0        0   18fc930     4     7    24
ptc         5a0ca40  5a0ca00  5a0cb00  0x0        0   18fa5c0     4     2    23
ttyp        5a0ca00  5a0c9c0  5a0ca40  0x0        0   18fc950     4     0    26
ptyp        5a0c9c0  5a0cf40  5a0ca00  0x0        0   18fc940     4     0    25
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ds [Address]
The ds subcommand returns the symbols closest to the given address. The ds
subcommand can take either a text address or a data address.

Aliases = none

> ds 012345
       .ioctl_systrace  + 0x000001b5

When a number such as 0x000001b5 is displayed, it shows the number of assembly
language instructions by which the given address is offset from the entry point of the routine.

du [ThreadT ableEntry]
Displays a combined hex and ASCII dump of the specified thread’s uthread structure and of
the user structure of the process which owns the thread. If the data is not available (paged
out), a message is displayed. The default is the current thread.

Aliases = none

> du 3
Uthread structure of thread slot  3
  00000000 00000000 00000000 2ff7fec0 00000000 *......../.......*
  00000010 00000303 00000000 00030644 000010b0 *...........D....*
  00000020 22222828 00030644 00006244 00000009 *””((...D..bD....*
.
.
.

dump
The dump subcommand displays the name of each component for which there is data
present. After you select a component name from the list, the crash program loads and runs
the associated formatting routine contained in the /usr/lib/ras/dmprtns directory.

If there is more than one data area for the selected component, the formatting routine
displays a list of the data areas and allows you to select one. The crash command then
displays the selected data area. You can enter the quit subcommand to return to the
previously displayed list and make another selection or enter quit a second time to leave the
dump subcommand loop.

Aliases = none

Displays messages in the error log. Count is the number of messages to print that have
already been read by the errdemon process. (The default is 3 messages.) errpt always
prints all messages that have not yet been read by the errdemon process.

Aliases = none

file [FileTableEntry]
The file subcommand displays the file table. Unless you request specific file entries, the
command displays only those with a nonzero reference.

Aliases = files, f

> f 3
SLOT  REF     INODE    FLAGS
   3    1  0x018e53f0   read

Refer to sys/file.h for the structure definition.



14-11Debugging Tools

fmodsw
The fmodsw subcommand displays the streams modules switch table.  The information
printed is contained in an internal structure.  The following members of this internal structure
are described here:

address Address of fmodsw
d_next Pointer to the next module in the list
d_prev Pointer to the previous module in the list
d_name Name of the module
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for module-level synchronization
d_str Pointer to streamtab associated with the module
d_sq_level Synchronization level specified at configuration time
d_refcnt Number of open or pushed count
d_major –1

The flags structure member, if set, is based one of the following  values:

#define Value Description
F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3) open/close parameters
F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall callbacks
F_MODSW_MPSAFE 0x4 Non-MP-Safe drivers need funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h file.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> fmodsw
NAME        ADDRESS     NEXT PREVIOUS FLAG   SYNCHQ STREAMTAB S–LVL COUNT MAJOR
bufcall     5a0cf80  5a0cc00  5a0ca80  0x1  5a0ad60   188bf80     3     0    –1
sc          5a0cc00  5a0cbc0  5a0cf80  0x0  5a0abe0   18a29b0     3     0    –1
timod       5a0cbc0  5a0cb80  5a0cc00  0x0  5a0abc0   18a34b0     3     0    –1
tirdwr      5a0cb80  5a0cac0  5a0cbc0  0x0  5a0aba0   18a4010     3     0    –1
ldterm      5a0cac0  5a0ca80  5a0cb80  0x0        0   18ef460     4     8    –1
tioc        5a0ca80  5a0cf80  5a0cac0  0x0        0   18f0e90     4    10    –1

fs [ThreadT ableEntry]
Traces a kernel stack for the thread specified by ThreadT ableEntry. Displays the called
subroutines with a hex dump of the stack frame for the subroutine that contains the
parameters passed to the subroutine. By default, the current thread is traced. This
subcommand will not work on a running system because it uses stack tracing; however, it
does work on a dump image.

Aliases = none

> fs
STACK TRACE:
        **** .et_wait ****
2ff97e78  2FF97ED8 0080D568 00000000 018F4C60   /.^....h......L‘
2ff97e88  2FF97EE8 0080D568 00082BC0 000BA020   /.^....h..+.....
2ff97e98  2FF97ED8 28008044 00082418 2FF98000   /.^.(..D..B./...
2ff97ea8  00000000 000B8468 00000000 00000000   .......h........
2ff97eb8  2FF97F38 0000000B 00000004 00000004   /..8............
2ff97ec8  00000005 01DFE258 00000000 E3000600   .......X........

inode [–] [<Major> <Minor> <INumber> ]
The inode subcommand displays the i-node table and the i-node data block addresses. You
can display a specific i-node by specifying the major and minor device numbers of the
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device where the i-node resides and the i-node number. The command displays the i-node
only if it is currently on the system hash list.

Aliases = ino, i

>inode
 ADDRESS   MAJ MIN  INUMB REF LINK  UID  GID   SIZE    MODE  SMAJ SMIN FL
AGS
0x018e4e50 010 0007 11264   0    1    2    2     30 ––––777    –    –
0x018f9fd0 010 0009 16384   1    6  201    0    512 d–––755    –    –
     addr: 16448   0   0   0   0   0   0   0
0x018ea940 010 0011     0   1    0    0    0      0 ––––  0    –    –
...

kfp [FramePointer]
If you use the kfp subcommand without parameters, it displays the last kernel frame pointer
address that was set using kfp. If you specify a frame pointer address, it sets the kernel
frame pointer to the new address. Use this subcommand in conjunction with the –r flag of
the trace subcommand.

Aliases = fp, rl

> kfp

knlist [Symbol]
The knlist subcommand displays the addresses of all the specified symbol names. If there
is no such symbol, the subcommand displays a no match message. Run this subcommand
only on an active system.

The knlist subcommand runs a subroutine to the active kernel to obtain the address from
the system’s knlist. The nm subcommand provides the same function but searches the
symbol table in the Kernel Image File for the address and therefore can be used on a dump.

Aliases = none

> knlist open
open:0x000bbc98

le [Module Address]
The le subcommand displays the kernel load list entries. If you specify an address in a
kernel extension, the corresponding load list entry is displayed. If you attempt to display a
paged out loader entry, the subcommand displays an error message.

Aliases = none

linkblk
The linkblk subcommand displays the streams linkblk table. Refer to the
/usr/include/sys/stream.h file for the linkblk structure definitions. If there are no
linkblk structures found on the system, the linkblk subcommand will print a message
stating that no structures are found.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = lblk

This example shows a regular link:

> linkblk
    QTOP     QBOT    INDEX
 5ab8b74  5ae5074  5ab4200
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This example shows a persistent link:

> linkblk
    QTOP     QBOT    INDEX
       0  5ae5174  5a4ef00

mblock Address
The mblock subcommand displays the allocated streams message block headers. The
address parameter is required.  If the address is not supplied, this command will print an
error message stating that the address is required.  Refer to the /usr/include/sys/stream.h
file for the queue structure definitions.

The mblock subcommand’s checking of the address parameter is limited to verifying that
the address falls on a 128-byte boundary.  It is up to the user to be sure that a valid address
is specified.

To determine a valid address, run the queue subcommand.  From the output of the queue
subcommand, select a non-zero address for the head of the message queue under the
HEAD column heading for either a read queue or a write queue.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = mblk

> queue 59d5a74
   QUEUE    QINFO     NEXT  PRIVATE  FLAGS     HEAD   OTHERQ      COUNT
59d5a74  1884c1c  59d5474  59d5500 0x003e  59e1c00  59d5a00       4096
> mblk 59e1c00
 ADDRESS     NEXT PREVIOUS     CONT     RPTR     WPTR DATABLOCK
 59e1c00        0        0        0  59e2000  59e3000   59e1c44

mbuf [–] [Clusters | Address ...]
The mbuf subcommand displays the system mbuf structures. These structures are memory
buffers that are chained and can be manipulated by the Memory Buffer kernel services. If
you specify the – flag, the subcommand also displays the data associated with the mbuf
structures.

The mbuf subcommand with no additional arguments displays the chain of mbuf structures
pointed to by the mbuf pointer. If you specify Clusters, the subcommand displays the chain
of mbuf structures pointed to by the kernel mbclusters pointer. If you specify Address, then
the mbuf structure at the given address is displayed. Note that valid mbuf pointers must be
on a 128-byte boundary.

Aliases = mbuff

> mbuf
  ADDRESS   SIZE    TYPE     LINK       DATAPTR
0x01a67000     0    free  0x00000000  0x01a67000
    DATA:  0x00000000 0x00000000 0x00000000 0x00000000

Refer to the sys/mbuf.h header file for the structure definition.

mst [Address]
The mst subcommand displays the mstsave portion of the uthread structures at the
addresses specified. If you do not specify an address, the subcommand displays information
about the last running kernel thread.

Aliases = none
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ndb
Displays network kernel data structures either for a running system or a system dump. The
ndb subcommand, short for network debugger, displays the following options:

? Provides first-level help information.
help Provides additional help information.
tcb [Addr] Shows TCBs. The default is HEAD TCB.
udb [Addr] Shows UDBs. The default is HEAD UDB.
sockets Shows sockets from the file table.
mbuf [Addr] Shows the mbuf at the specified address.
ifnet [Addr] Shows the ifnet structures at the specified address.
quit Stops the running option.
xit Exits the ndb submenu.

Aliases = none

nm [Symbol]
The nm subcommand displays the symbol value and type found in KernelFile.

Aliases = none

> nm open
        00095484 000C70  PR SD    <.open>
        00095484         PR LD    .open
        000BBC98 00000C  SV SD    open

od [SymbolName | Address] [Count] [Format]
The od subcommand dumps Count number of data values starting at Symbol value or
Address according to Format. Possible formats are octal, longoct, decimal, longdec,
character, hex, instruction, and byte. The default is hex. Note that if you use the Format
parameter, you must also use Count.

The od subcommand is especially useful during program development in order to see
structure values at a given point in time.

Aliases = none

> od open 10
00095484: 7c0802a6 bf21ffe4 90010008 9421ff30
00095494: 609c0000 832202e0 607b0000 60bd0000
000954a4: 63230000 38800000

> od open 10 byte
00095484: 0174 0010 0002 0246 0277 0041 0377 0344
0009548c: 0220 0001

> od 12345
warning: word alignment performed
00012344: 480001d8

ppd [ProcessorNumber | *]
Displays per-processor data area (PPDA) structures for the specified processor. If no
processor is specified, the current processor selected by the cpu subcommand is used. If
the asterisk argument is given, the PPDA of every enabled processor is displayed.

Aliases = none
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> ppd
Per Processor Data Area for processor  0
csa......................2fedf500
mstack...................00315db0
fpowner..................e6001360
curthread................e6001360
r0.......................60000000
r1.......................6000068e
r2.......................d00089b8
r15......................0000f930
sr0......................d0005a54
sr2......................2feac6e0
iar......................f013c7c4

print  type Address
Does dbx-style printing of structures. The –i option must be given on the command line to
use this feature.

Aliases = none

proc [–] [–r] [ProcessT ableEntry]
The proc subcommand displays the process table, including the kernel thread count (the
number of threads in the process) and state of each process. Use the –r flag to display only
runnable processes. Use the – flag to display a longer listing of the process table.

Aliases = ps, p

>p 
   
SLT ST    PID   PPID   PGRP   UID  EUID  TCNT  NAME 
  0 a       0      0      0     0     0     1  swapper 

FLAGS: swapped_in no_swap fixed_pri kproc 
  1 a       1      0      0     0     0     1  init 

FLAGS: swapped_in no_swap 
  2 a     204      0      0     0     0     1  wait 

FLAGS: swapped_in no_swap fixed_pri kproc 
 ...
 

>p 20
  
SLT ST    PID   PPID   PGRP   UID  EUID  TCNT  NAME 
 20 a    1406      1   1406     0     0     1  ksh  

FLAGS: swapped_in no_swap 
 

>p – 

SLT ST    PID   PPID   PGRP   UID  EUID  TCNT  NAME 
  0 a       0      0      0     0     0     1  swapper 

FLAGS: swapped_in no_swap fixed_pri kproc
 
Links:  *child:0xe3000100  *siblings:0x00000000  *uidl:0xe3001400
    *ganchor:0x00000000 
Dispatch Fields:  pevent:0x00000020  wevent:0x00000000
    *p_synch:0xffffffff 
Thread Fields:  *threadlist:0xe6000000  threadcount:    1 
   active:    1  suspended:    0  local:    0  localsleep:    0 
   *synch:0xffffffff
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Scheduler Fields:   fixed pri: 16  repage:0x00000000
scount:0x00000000 
Misc:  adspace:0x00000808  *ttyl:0x00000000 
       *p_ipc:0x00000000  *p_dblist:0x00000000
*p_dbnext:0x00000000 
    *lock:0x00000000  kstackseg:0x007fffff *pgrpl:0x08x
             
Signal Information:
    pending:hi 0x00000000,lo 0x00000000 
    sigcatch:hi 0x00000000,lo 0x00000000  sigignore:hi
0xffffffff,lo 0xfff7ffff
Statistics:  size:0x00000000(pages)  audit:0x00000000 
  
  
SLT ST    PID   PPID   PGRP   UID  EUID  TCNT  NAME 
  1 a       1      0      0     0     0     1  init

FLAGS: swapped_in no_swap

 Links:  *child:0xe3001400  *siblings:0x00000000
*uidl:0xe3000100 
    *ganchor:0x00000000 
Dispatch Fields:  pevent:0x00000020  wevent:0x00000000
    *p_synch:0xffffffff 
Thread Fields:  *threadlist:0xe60000a0  threadcount:    1 
   active:    1  suspended:    0  local:    0  localsleep:    0 
   *synch:0xffffffff 
Scheduler Fields:   nice: 20  repage:0x00000000
scount:0x00000000 
Misc:  adspace:0x00000505  *ttyl:0x00000000 
       *p_ipc:0x00000000  *p_dblist:0x00000000
*p_dbnext:0x00000000 
    *lock:0x00000000  kstackseg:0x007fffff *pgrpl:0x08x 
Signal Information: 
    pending:hi 0x00000000,lo 0x00000000 
    sigcatch:hi 0x00000001,lo 0x18783eff  sigignore:hi
0xfffffffe,lo 0xe787c100
Statistics:  size:0x00000028(pages)  audit:0x00000000 
...
 

Refer to the sys/proc.h header file for the structure definition.

queue [Address]
The queue subcommand displays the STREAMS queue. If the address optional parameter
is not supplied, crash will display information for all queues available.  Refer to the
/usr/include/sys/stream.h file for the queue structure definitions.

If you wish to see the information stored for a read queue, issue the queue subcommand
with the read queue address specified as the parameter.

When you issue the queue subcommand with the address parameter, the column headings
do not distinguish between the read queue and the write queue.  One queue address will be
displayed under the column heading QUEUE.  The other queue in the pair will be displayed
under the column heading  OTHERQ.  The write queue will have a numerically higher address
than the read queue.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = que



14-17Debugging Tools

> queue
 WRITEQ    QINFO     NEXT  PRIVATE  FLAGS     HEAD    READQ      COUNT
59c2a74  188c50c  59c2474  59b1900 0x002a        0  59c2a00          0
59c2474  18f0e50  59c2274  59b6880 0x0028        0  59c2400          0
59c2274  18ef3d8  59c2174  59cc800 0x0028        0  59c2200          0
59c2174  18b31b4        0  54684f8 0x0028        0  59c2100          0
59d5a74  188c50c  5a94874  59d3c00 0x002a        0  59d5a00          0
5a94874  18f0e50  5a9c074  59ec500 0x0028        0  5a94800          0
5a9c074  18fa748        0  59e5b00 0x0028        0  5a9c000          0
59ff074  188c50c  59eab74  59ffe00 0x002a        0  59ff000          0
59eab74  18f0e50  59ff374  59da500 0x0028        0  59eab00          0
59ff374  18fa748        0  59da380 0x0028        0  59ff300          0
5ab4374  188c50c  59ee174  5ab4c00 0x002a        0  5ab4300          0
59ee174  18f0e50  5ab4774  59da100 0x0028        0  59ee100          0
5ab4774  18ef3d8  5ad2874  59d7800 0x0028        0  5ab4700          0

> queue 5ab4700
  QUEUE    QINFO     NEXT  PRIVATE  FLAGS     HEAD   OTHERQ      COUNT
5ab4700  18ef3bc  59ee100  59d7800 0x0029        0  5ab4774          0

quit
Exit from the crash command.

Aliases = q

qrun
The qrun subcommand displays the list of scheduled streams queues.  If there are no
queues found for scheduling, the qrun subcommand will print a message stating there are
no queues scheduled for service.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> qrun
   QUEUE
 59d5a74

socket [–]
The socket subcommand displays the system socket structures. Use the – flag to also
display the socket buffers.

Aliases = sock

> sock
SLOT:   26  type:0x0002  opts:0x0000  linger:0x0000
     state:0x0080  pcb:0x01d32d8c  proto:0x01c65cf0
     q0:0x00000000  q0len:    0 q:0x00000000
     qlen:    0  qlimit:    0  head:0x00000000
     timeo:    0  error:    0  oobmark:    0  pgrp:    0
...

Refer to sys/socket.h for structure definitions.

stack [ThreadT ableEntry]
The stack subcommand displays a dump of the kernel stack of the kernel thread identified
by ThreadT ableEntry. The addresses are virtual data addresses rather than true physical
addresses. If you do not specify an entry, the subcommand displays information about the
last running kernel thread. You cannot trace the stack of the current running kernel thread on
a running system.

Aliases = s, stk, k, kernel
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> s 31
KERNEL STACK:
2ff97a50:            8eaa4        16  2ff97ac8         2
2ff97a60:             90b0     8e8b4  2ff97ad8         0
2ff97a70:                1        26  2ff97ac8  2ff98938
...

stat
The stat subcommand displays statistics found in the dump. These statistics include the
panic message (if there is one), time of crash, and system name.

Aliases = none

> stat
        sysname: AIX
        nodename: funk
        release: 1
        version: 3
        machine: 000003961000
        time of crash: Fri Sep 28 17:50:38 1990
        age of system: 15 day, 6 hr., 25 min.

status [ProcessorNumber]
Displays a description of the kernel thread scheduled on the designated processor. If no
processor is specified, the status subcommand displays information for all processors. The
information displayed includes the processor number, kernel thread identifier, kernel thread
table slot, process identifier, process table slot, and process name.

Aliases = none

> status 0
CPU     TID  TSLOT     PID  PSLOT  PROC_NAME
  0    1fe1     31    1fd8     31  crash

stream
The stream subcommand displays the stream head table. The information printed is
contained in an internal structure.  The following members of this internal structure are
described here:

address address of stream head
wq address of streams write queue
dev associated device number of the stream
read error read error on the stream
write_error write error on the stream
flags stream head flag values
push_cnt number of modules pushed on the stream
wroff write offset to prepend M_DATA
ioc_id id of outstanding M_IOCTL request
pollq list of active polls
sigsq list of active M_SETSIGs

The flags structure member, if set, is based on combinations of the following values:
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#define Value Description
F_STH_READ_ERROR 0x0001 M_ERROR with read error received, fail all read calls
F_STH_WRITE_ERROR 0x0002 M_ERROR with write error received, fail all writes
F_STH_HANGUP 0x0004 M_HANGUP received, no more data
F_STH_NDELON 0x0008 Do TTY semantics for ONDELAY handling
F_STH_ISATTY 0x0010 This stream acts a terminal
F_STH_MREADON 0x0020 Generate M_READ messages
F_STH_TOSTOP 0x0040 Disallow background writes (for job control)
F_STH_PIPE 0x0080 Stream is one end of a pipe or FIFO
F_STH_WPIPE 0x0100 Stream is the “write” side of a pipe
F_STH_FIFO 0x0200 Stream is a FIFO
F_STH_LINKED 0x0400 Stream has one or more lower streams linked
F_STH_CTTY 0x0800 Stream controlling tty
F_STH_CLOSED 0x4000 Stream has been closed, and should be freed
F_STH_CLOSING 0x8000 Actively on the way down

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> stream
ADDRESS   WRITEQ MAJ/MIN RERR WERR  FLAGS IOCID  WOFF PCNT POLQNEXT SIGQNEXT
59b1900  59c2a74  15,  0    0    0 0x0838     0     0    2        0        0
59d3c00  59d5a74  23,  5    0    0 0x0020     0     0    1        0        0
59ffe00  59ff074  23,  4    0    0 0x0020     0     0    1        0        0
5ab4c00  5ab4374  24,  0    0    5 0x0816     0     0    2        0        0
59d3f00  59ee974  24,  1    0    5 0x0816     0     0    2        0        0
59d3800  59dff74  24,  2    0    5 0x0816     0     0    2        0        0
59d3700  5a9c174  24,  3    0    5 0x0816     0     0    2        0        0
59ff800  59ff774  24,  4    0    0 0x0810     0     0    2        0        0
5a94d00  59ee574  24,  5    0    0 0x0830     0     0    2        0        0
5a94600  5a96c74  24,  6    0    5 0x0816     0     0    2        0        0

tcb [ThreadT ableEntry] . . .
Displays the mstsave portion of the user structures of the named kernel threads (see the
user.h and mstsave.h header files). If you do not specify an entry, information about the last
running kernel thread is displayed. This subcommand replaces the pcb subcommand.

Aliases = none

> tcb
        UTHREAD AREA FOR SLOT   2
SAVED MACHINE STATE
  curid:0x00000204  m/q:0x00000000  iar:0x00019cfc  cr:0x22000000
  usr:0x00009030  lr:0x00035678  ctr:0x00019c90  xer:0x20000000
  *prevmst:0x00000000  *stackfix:0x00000000  intpri:0x0000000b
  backtrace:0x00  tid:0x00000000  fpeu:0x00  ecr:0x00000000
  Exception Struct
    0x00000000  0x00000000  0x00000000  0x00000000  0x00000000
  Segment Regs
   0:0x00000000   1:0x007fffff   2:0x00000408   3:0x007fffff
   4:0x007fffff   5:0x007fffff   6:0x007fffff   7:0x007fffff
.
.
.

Aliases = none
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>tcb  

  UTHREAD AREA FOR SLOT  25 

SAVED MACHINE STATE 

    curid:0x0000162e  m/q:0x00000000  iar:0x0187e1dc  cr:0x44224820 

    msr:0x000090b0  lr:0x0187e2d8  ctr:0x00040610  xer:0x00000004

    *prevmst:0x00000000  *stackfix:0x00000000  intpri:0x0000000b 

    backtrace:0x00  tid:0x00000000  fpeu:0x01  ecr:0x00000000 

    Exception Struct 

      0xd0112540  0x42000000  0x400015b5  0xd0112540  0x00000106

    Segment Regs 

     0:0x00000000   1:0x007fffff   2:0x000019f9   3:0x007fffff 

     ...

    General Purpose Regs 

     0:0x018abcd8   1:0x2fedefb8   2:0x018ac41c   3:0x018ab6e4 

     4:0x018a63b0   5:0x018a63b0   6:0x018a63b0   7:0x00000000 

     ...

    Floating Point Regs 

        Fpscr: 0x00000000 

     0:0x00000000 0x00000000  1:0x00000000 0x00000000  2:0x00000000 0x00000000 

     3:0x00000000 0x00000000  4:0x00000000 0x00000000  5:0x00000000 0x00000000 

     ...

Kernel stack address: 0x2fedf500

  

>tcb 10 

    

  UTHREAD AREA FOR SLOT  10

 

SAVED MACHINE STATE 

    curid:0x000009f4  m/q:0x00008003  iar:0x0001ddf8  cr:0x80222822 

    msr:0x000010b0  lr:0x0001ddf8  ctr:0x000ee000  xer:0x00000000

    *prevmst:0x00000000  *stackfix:0x2fedf2d8  intpri:0x00000000 

    backtrace:0x00  tid:0x00000000  fpeu:0x01  ecr:0x00000000 

    Exception Struct 

      0x30000000  0x40000000  0x00001272  0x30000000  0x00000106 

    Segment Regs 

     0:0x00000000   1:0x007fffff   2:0x00001010   3:0x007fffff 

     ...

     General Purpose Regs 

     0:0x40000707   1:0x2fedf2d8   2:0x00160d2c   3:0x00000420 

     4:0x00000001   5:0xe6000644   6:0x000010b0   7:0x00000420 

     ... 

    Floating Point Regs 

        Fpscr: 0x00000000 

     0:0x00000000 0x00000000  1:0x00000000 0x00000000  2:0x00000000 0x00000000 

     3:0x00000000 0x00000000  4:0x00000000 0x00000000  5:0x00000000 0x00000000 

     ...

 

Kernel stack address: 0x2fedf500

thread [–] [–r] [–p ProcessT ableEntry | –a Address | ThreadT ableEntry]
Displays the contents of the kernel thread table. The – (minus) flag displays a longer listing
of the thread table. The –r flag displays only runnable kernel threads. The –p flag displays
only those kernel threads which belong to the process identified by ProcessT ableEntry. The
–a flag displays the kernel thread structure at Address. If ThreadT ableEntry is given, only
the corresponding kernel thread is displayed.
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Aliases = th

> thread 1
SLT ST    TID      PID    CPUID  POLICY PRI CPU   EVENT  PROCNAME
  1 s     1e1        1  unbound   other  3c   0              init
        FLAGS: wakeonsig

The trace subcommand displays a kernel stack trace of the kernel thread identified by
ThreadT ableEntry. The trace starts at the bottom of the stack and attempts to find valid stack
frames deeper in the stack. By default, the current kernel thread is used.

Use the –r flag to use the kernel frame pointer set up by the kfp subcommand as the
starting address instead of the frame pointer found in the SystemImageFile. The trace
subcommand stops and reports an error if an invalid frame pointer is encountered.

Aliases = t

> t 31
STACK TRACE:

.et_wait ()

.e_sleep ()

.e_sleepl ()

.sleepx ()

.fifo_read ()

.fifo_rdwr ()

.vno_rw ()

.rwuio ()

.rdwr ()

.kreadv ()

ts [TextAddress]
The ts subcommand finds the text symbols closest to the given address.

Aliases = none

> ts 012345
.ioctl_systrace

tty [d] [l] [e] [Name | Major [Minor]]
Aliases = term, dz, dh

Refer to the sys/tty.h header file for the structure definition.

user [ThreadT ableEntry]
Displays the uthread structure and the associated user structure of the thread identified by
ThreadT ableEntry. If you do not specify the entry, the information about the last running
kernel thread is displayed..

Aliases = u, uarea, u_area

>u 4 

     UTHREAD AREA FOR SLOT   4 
  
SAVED MACHINE STATE 
    curid:0x00000408  m/q:0x00008003  iar:0x0001ed98  cr:0x84201000 
    msr:0x000010b0  lr:0x0001ed98  ctr:0x00000000  xer:0x20000000
    *prevmst:0x00000000  *stackfix:0x2feaeea8  intpri:0x00000000 
    backtrace:0x00  tid:0x00000000  fpeu:0x00  ecr:0x00000000  
    Exception Struct 
      0x2feaf688  0x40000000  0x00000c0c  0x2feaf688  0x00000106 
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    Segment Regs  
     0:0x00000000   1:0x007fffff   2:0x00000c0c   3:0x007fffff 
     ...
    General Purpose Regs 
     0:0x00000000   1:0x2feaeea8   2:0x00160d2c   3:0x00001000 
     4:0x00000001   5:0x2fedf500   6:0x0000000b   7:0x000090b0 
     ... 
    Floating Point Regs 
        Fpscr: 0x00000000  
     0:0x00000000 0x00000000  1:0x00000000 0x00000000 
     ...
    30:0x00000000 0x00000000 31:0x00000000 0x00000000 
  
Kernel stack address: 0x2feaeffc 
 
SYSTEM CALL STATE 
    errno address:0xc0c0fade  error code:0x00  *kjmpbuf:0x00000000 
  
PER–THREAD TIMER MANAGEMENT  
    Real/Alarm Timer (ut_timer.t_trb[TIMERID_ALRM]) = 0x0 
    Virtual Timer (ut_timer.t_trb[TIMERID_VIRTUAL]) = 0x0 
    Prof Timer (ut_timer.t_trb[TIMERID_PROF]) = 0x0    
  
SIGNAL MANAGEMENT 
    *sigsp:0x0  oldmask:hi 0x0,lo 0x0  code:0x0 
 
MISCELLANOUS FIELDS:
   fstid:0x00000000   ioctlrv:0x00000000   selchn:0x00000000 
 
      USER AREA OF ASSOCIATED PROCESS gil (SLOT   4, PROCTAB 0xe3000400) 
     handy_lock:0x00000000  timer_lock:0x00000000 
    map:0x00000000  *semundo:0x00000000  
    compatibility:0x00000000  lock:0x00000000 
 
SIGNAL MANAGEMENT 
    Signals to be blocked (sig#:hi/lo mask,flags,&func)  
     1:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000 
     2:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000 
     3:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000 
     ... 

USER INFORMATION  
    euid:0x0000  egid:0x0000  ruid:0x0000  rgid:0x0000  luid:0x00000000  
    suid:0x00000000  ngrps:0x0000  *groups:0x2feacc34  compat:0x00000000 
    ref:0x00000004  
    acctid:0x00000000   sgid:0x00000000   epriv:0x00000000  
    ipriv:0x00000000   bpriv:0x00000000   mpriv:0x00000000  
    
    u_info: 
  
ACCOUNTING DATA  
    start:0x2d612cc9  ticks:0x00000002  acflag:0x0000  pr_base:0x00000000
    pr_size:0x00000000  pr_off:0x00000000  pr_scale:0x00000000  
    process times: 
           user:0x00000000s 0x00000000us  
            sys:0x000004f1s 0x14dc9380us  
    children’s times: 
           user:0x00000000s 0x00000000us 
            sys:0x00000000s 0x00000000us 
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CONTROLLING TTY 
    *ttysid:0x00000000  *ttyp(pgrp):0x00000000 
    ttyd(evice):0x00000000  ttympx:0x00000000  *ttys(tate):0x00000000
    tty id: 0x00000000  *query function: 0x00000000 
 
PINNED PROFILING BUFFER 
    *pprof: 0x00000000  *mem desc: 0x00000000 
 
RESOURCE LIMITS AND COUNTERS 
    ior:0x00000000  iow:0x00000000  ioch:0x00000000  
    text:0x00000000  data:0x00000000  stk:0x01000000 
    max data:0x08000000  max stk:0x01000000  max file:0x7fffffff
    soft core dump:0x7fffffff  hard core dump:0x7fffffff 
    soft rss:0x7fffffff  hard rss:0x7fffffff 
    cpu soft:0x7fffffff  cpu hard:0x7fffffff 
    hard ulimit:0x7fffffff 
    minflt:0x00000000   majflt:0x00000000
 
AUDITING INFORMATION 
    auditstatus:0x00000000 

SEGMENT REGISTER INFORMATION 
    Reg        Flag      Fileno     Pointer  
     0           0          0          0     
     1           0          0          0     
     ...
    *adspace:0xa0000000
     
FILE SYSTEM STATE  
    *curdir:0x00000000  *rootdir:0x00000000 
    cmask:0x0000  maxindex:0x0000   
FILE DESCRIPTOR TABLE   
    *ufd: 0x20013b14

> user
        UTHREAD AREA FOR SLOT  31
SAVED MACHINE STATE
  curid:0x00001fd8  m/q:0x00000000  iar:0x0006ee54  cr:0x2224248a
  msr:0x00009030  lr:0x000095d4  ctr:0x00000009  xer:0x00000020
  *prevmst:0x00000000  *stackfix:0x00000000  intpri:0x0000000b
  backtrace:0x00  tid:0x00000000  fpeu:0x01  ecr:0x00000000
  Exception Struct
    0x10013b7c  0x4000d030  0x60000990  0x10013b7c  0x00000106
  Segment Regs
   0:0x00000000   1:0x007fffff   2:0x0000068e   3:0x6000068e
   4:0x007fffff   5:0x007fffff   6:0x007fffff   7:0x007fffff
.
.
.
  21_trb[TIMERID_ALRM]) = 0x0
  Virtual Timer (ut_timer.t_trb[TIMERID_VIRTUAL]) = 0x0
  Prof Timer (ut_timer.t_trb[TIMERID_PROF]) = 0x0
SIGNAL MANAGEMENT
    *sigsp:0x0  oldmask:hi 0x0,lo 0x0  code:0x0
MISCELLANOUS FIELDS:
   fstid:0x00000000   ioctlrv:0x00000000   selchn:0x00000000
        USER AREA OF ASSOCIATED PROCESS crash (SLOT  31, PROCTAB
0xe3001f00)
    handy_lock:0x00000000  timer_lock:0x00000000
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    map:0x00000000  *semundo:0x00000000
    compatibility:0x00000000  lock:0x00000000
SIGNAL MANAGEMENT
    Signals to be blocked (sig#:hi/lo mask,flags,&func)
     1:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000
     2:hi 0x00x00000000
.
.
.

Refer to the sys/user.h header file for the structure definition.

var
The var subcommand displays the tunable system parameters.

Aliases = tune, tunable, tunables

> var
buffers 20
files 328
e_files 328
threads 262144
e_threads 51
clists 16384
maxproc 40
iostats 1
locks 200
e_locks 8456344

vfs [–] [Vfs SlotNumber]
The vfs uses the specified Vfs SlotNumber to display an entry in the vfs table. Use the –
flag to display the vnodes associated with the vfs. The default displays the entire vfs table.

Aliases = m, mnt, mount

> vfs 3
VFS ADDRESS TYPE  OBJECT    STUB NUM FLAGS  PATHS
  3 1a62494  jfs 1a6d47c 1a6d650   5 D     /dev/hd1 mounted over /u
        flags:  C=disconnected D=device   I=remote P=removable
                R=readonly     S=shutdown U=unmounted Y=dummy
> vfs – 3
VFS ADDRESS TYPE  OBJECT    STUB NUM FLAGS  PATHS
  3 1a62494  jfs 1a6d47c 1a6d650   5 D     /dev/hd1 mounted over /u
ADDRESS VFS MVFS VNTYPE FSTYPE COUNT ISLOT    INODE FLAGS
1a6e0ac   3    –   vreg    jfs     1     –  18f82c0
1a6e218   3    –   vreg    jfs     1     –  18f8770
1a6e24c   3    –   vreg    jfs     1     –  18f8590
1a6e17c   3    –   vdir    jfs     3     –  18f7f00
1a6dea4   3    –   vreg    jfs     2     –  18f65b0
1a6dfa8   3    –   vdir    jfs     5     –  18f6100
1a6d47c   3    –   vdir    jfs     1     –  18ea580 vfs_root

Refer to the sys/vfs.h header file for structure definitions.

vnode [VNodeAddress]
The vnode subcommand displays data at the specified VNodeAddress as a vnode. 
VNodeAddress must be specified in hexadecimal notation.The default is to display all
vnodes in the vnode table.

Aliases = none
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> vnode 1a6e078
ADDRESS VFS MVFS VNTYPE FSTYPE COUNT ISLOT  DATAPTR FLAGS
1a6e078   0    –   vreg    jfs     4     –  18f6790
 Total VNODES printed 1

Refer to the sys/vnode.h header file for the structure definition.

xmalloc
The xmalloc subcommand displays information concerning the allocation and usage of
kernel memory, specifically the pinned_heap and the kernel_heap.

Aliases = xm, malloc

>xmalloc 

Kernel heap usage 
heap size = 242720768 amount used = 79005568  
Pinned heap usage 
heap size = 242720768 amount used =   342832 
Kernel and pinned heap usage 
from =   1028ac bytes = 62914560 number =      2 
from =    41d58 bytes =  8388608 number =      1 
 ...
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Low-Level Kernel Debugger
Use the kernel debug program (also known as the low-level debugger) for debugging the
kernel and kernel extensions. The kernel debug program provides the following functions:

• Setting breakpoints within the kernel.

• Formatting and displaying selected kernel data structures.

• Viewing and modifying memory for any kernel data.

• Viewing and modifying memory for kernel instructions.

• Modifying the state of the machine by altering system registers.

Entering the Debugger
You can only display the kernel debugger on an ASCII terminal connected to a serial port.
The kernel debugger does not support any displays connected to any graphics adapters.
The debugger has its own device driver for handling the display terminal. It is also possible
to connect a serial line between two machines and define the serial line port as the port for
the console. In that case, use the cu command to connect to the target machine and run the
debugger.

It is possible to enter the system debugger through one of the following procedures:

• From a native keyboard, press Ctrl-Alt-Numpad4. The key must be in service position to
enter the kernel debug program from the keyboard.

• From the tty keyboard, enter Ctrl-4 (IBM 3151 terminals) or Ctrl-\ (BQ 303, BQ 310C, and
WYSE 50). The key must be in service position to enter the kernel debug program from
the keyboard.

• The system can enter the debugger if a breakpoint is set. To do this, use the break
subcommand. See “Setting Breakpoints” on page 14-45 for information on setting a
breakpoint.

• The system can also enter the debugger by calling the brkpoint subroutine from C code.
The syntax for calling this subroutine is:

brkpoint();

• The system can also enter the debugger if a static debug trap (SDT), is compiled into the
code. To do this, place the assembly language instruction:

t 0x4, r1 r1

at the desired address. One way to do this is to create an assembly language routine that
does this, then call it from your driver code.

• The system can also enter the debugger if a system halt is caused by a fatal system
error. In such a case, the system creates a log entry in the system log and if the low level
debugger is available, calls the low-level debugger. A system dump is generated on exit
from the debugger.

If the kernel debug program is not available (nothing happens when you type in the above
key sequence), you must load it. To do this, use the bosboot command:

bosboot –a –d /dev/hdisk0 –D

OR

bosboot –a –d /dev/hdisk0 –I
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The –D flag causes the kernel debugger program to be loaded. The –I flag also causes the
kernel debug program to be loaded, but it is also invoked at system initialization. This means
that when the system starts, it will trap the kernel debug program.

If the kernel debug program is invoked during initialization, use the go subcommand to
continue the initialization process. Note that you must shut down and reboot the system after
the bosboot command in order for the changes to take effect.

You can also use the crash command to determine whether the kernel debug program is
available. Use the od subcommand:

# crash
>od dbg_avail

If the od subcommand returns a 0 or 1, the kernel debug program is available. If it returns 2,
the debug program is not available.

Debugger Subcommands and Concepts
When the kernel debugger is invoked, it is the only running process. All the interrupts are
disabled and the cache is flushed. After exiting from the kernel debugger, all the processes
will continue to run unless you entered the debugger through a system halt. The debugger
has its own mstsave (machine state save) area. But what is displayed is the mstsave area
of the running thread when the debugger was entered.

Subcommands
Once in the kernel debugger, use the subcommands to investigate and make alterations.
Each command has an alias or a shortened form. This is the minimum number of letters
required by the debugger to recognize the alias as unique.

The following table contains a complete list of the kernel debugger subcommands. The table
is followed by a summary and examples of each subcommand.

Command Alias Description

alter a Alter memory

back b Decrements the Instruction Address Register (IAR)

break br Sets a breakpoint

breaks breaks Lists currently set breakpoints

buckets bu Displays contents of kmembucket kernel structures

clear cl Clears (removes) breakpoints

cpu cp Sets the current processor or shows processor states

display d Displays a specified amount of memory

dmodsw dm Displays the STREAMS driver switch table.

drivers dr Displays the contents of the device driver (devsw) table

find f Finds a pattern in memory

float fl Displays the floating point registers

fmodsw fm Displays the STREAMS module switch table

go g Starts the program running

? or help h Displays the list of valid commands

loop l Run until control returns to this point
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Command DescriptionAlias

map m Displays the system loadlist

mblk mb Displays the contents of message block structures

next n Increments the IAR

origin o Sets the origin

ppd pp Displays per-processor data

proc pr Displays the formatted process table

queue que Displays contents of STREAMS queue at specified address

quit q Ends a debugging session

reset r Releases a user-defined variable

screen s Displays a screen containing registers and memory

set se Defines or initialize a variable

sregs sr Displays segment registers

st st Stores a fullword in memory

stack sta Displays a formatted kernel stack trace

stc stc Stores one byte in memory

step ste Performs an instruction single-step

sth sth Stores a halfword in memory

stream str Displays stream head table

swap sw Switches from the current display and keyboard to another
RS232 port

thread th Displays thread table entires

trace tr Displays formatted trace information

trb trb Displays the timer request blocks

tty tt Displays the tty structure

user u Displays a formatted user area

uthread ut Displays the uthread structure

vars v Displays a listing of the user-defined variables

vmm vm Displays the virtual memory data structure

xlate x Translates a virtual address to a real address

alter Address Data

alter 1000 ffff Store the 16 bit value ffff at address 1000
a 1000 2C Store the 8 bit value 2C in the high order

byte at address 1000

The alter subcommand modifies the contents of memory, replacing the old value with the
new specified value. If data is only one byte, it is stored in the high order byte of the word at
address. If data is a halfword, it is stored in the high order halfword at address. Use this
subcommand to change data while a program is running.
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back [ByteCount]

back Decrement the IAR by 4 bytes
b 16 Decrement the IAR by 16 bytes

This subcommand decrements the Instruction Address Register (IAR) by the specified
amount.

break [Address]

break Set a breakpoint at the IAR
break 521a Set a breakpoint at address 521A
br 8300+A0 Set a breakpoint at A0 + 8300
break +A0 Set a breakpoint at the origin + A0
break lr Set a breakpoint at address in the link register

This subcommand sets a breakpoint which causes the debugger to be entered when the
instruction at the target address is next run. There is a maximum of 32 breakpoints.

breaks
breaks List breakpoints

This subcommand displays the breakpoints as a combination of segment register values,
and offsets into the segment. Since the segment registers can change during a program, an
address such as 1000052C can refer to different regions of memory. The segment register
value is needed, therefore, to specify a unique address. 

buckets
buckets      Display kmembucket kernel structure for offset 0 and
                       allocation size of 2.

The buckets subcommand displays the contents of the kmembucket kernel  structures.
These structures contain information on the net_malloc memory pool by size of allocation.

All output values are printed in hexadecimal format.

clear [Address]

clear Clear breakpoint at IAR
cl 10000200 Clear breakpoint at address 10000200

This subcommand removes a previously set breakpoint. If more than one breakpoint has the
specified offset into the segment (low order 28 bits of address), the command prompts you
with the segment values for each of the breakpoints, and asks which to clear.

cpu [ProcessorNumber]
cpu 2 Set the current processor number to 2
cpu Shows the kernel debugger state of each processor

This subcommand can be used to set the current processor or to show the kernel state of all
available processors.
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display Address [ByteCount]

display iar Display 16 bytes at the IAR
d 152f 12 Display 12 bytes at address 152F
display +B7 Display 16 bytes at the origin + B7
disp r3 Display 16 bytes at the address in r3
d r3> Display from the address contained in the

address in r3 (1 level of indirection)

This subcommand displays memory in hexadecimal and ASCII (characters). ByteCount is
the number of bytes to display, and is used to determine how memory is to be accessed. If
ByteCount is 1, a single byte is loaded. If ByteCount is 2, a halfword is loaded and a value of
4 causes a word to be loaded. Any other value (including none) causes memory to be
loaded one byte at a time.

dmodsw
The dmodsw subcommand displays the internal STREAMS driver switch table, one entry at
a time.  By pressing the Enter key, you can walk through all the dmodsw entries in the table.
The contents of the first entry are meaningless except for the d_next pointer.  When the last
entry has been  reached, the dmodsw command will print the message This is the
last entry.

The information printed is contained in an internal structure. The structure has the following
members:

address Address of dmodsw
d_next Pointer to the next driver in the list
d_prev Pointer to the previous driver in the list
d_name Name of the driver
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for driver-level synchronization
d_str Pointer to streamtab associated with the driver
d_sq_level Synchronization level specified at configuration time
d_refcnt Number of open or pushed count
d_major Major number of a driver

The flags structure member, if set, is based on the following values:

#define Value Description
F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3) open/close parameters
F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall callbacks
F_MODSW_MPSAFE 0x4 Non-MP-safe drivers need funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h file.

drivers [Slot | Address]

drivers Display device driver (devsw) table
drivers 10 Display slot 10 of the device driver table
dr 130000f Display last entry point before address 130000F
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This subcommand displays the contents of a devsw table entry. Each devsw entry consists
of a number of entry points (ddread, ddwrite, and so on) into the specified driver. Each entry
consists of a function descriptor, and the address of the function. If you do not specify any
parameters, the command displays the entire devsw table. If you specify a valid slot
number, the command displays the corresponding entry. If the slot number is not valid, the
command takes it as an address and displays the slot with the last entry point before the
address (along with the name of the entry point).

find Pattern|* [Start|*] [End|* [Align|*]]

find 7c81 Find first occurence of 7C81 in virtual
memory starting at 0

find ”AIX” Find first occurrence of string AIX
f 7c81 10000 Find first 7C81 after address 10000
f 7c81 0 top Find first 7C81 between 0 and

user–defined variable ”top”
find 7c81 * Find first 7C81 starting at last address used
f 7c81 * * 2 Same as above, but aligned on halfword
f 7c fx+1 * 2 Find next 7c starting at 1 + last address

that find stopped at

The find subcommand locates instances of the specified pattern in the current virtual
address space. If you specify an * (asterisk) instead of a value, the previous value is used.
For example:

find *

searches for the last pattern used.

This subcommand sets the variable fx to the address of the last item found. Use this feature
coupled with the asterisk to continue the search for the pattern. For example:

f * fx+1

searches for the last pattern starting at the next location. The find subcommand remembers
the alignment which was used in the previous search.

float
float Display floating point registers

This subcommand displays the floating point registers.

fmodsw
The fmodsw subcommand displays the internal STREAMS module switch table, one entry
at a time.  By pressing the Enter key, you can walk through all the fmodsw entries in the
table.  The contents of the first entry are meaningless except for the d_next pointer. When
the last entry has been reached, the fmodsw subcommand will print the message This is
the last entry.

The information printed is contained in an internal structure. The following members of this
internal structure are described here:

address Address of fmodsw
d_next Pointer to the next module in the list
d_prev Pointer to the previous module in the list
d_name Name of the module
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for module-level synchronization
d_str Pointer to streamtab associated with the module
d_sq_level Synchronization level specified at configuration time
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d_refcnt Number of open or pushed count
d_major –1

The flags structure member, if set, is based one of the following  values:

#define Value Description
F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3) open/close parameters
F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall callbacks
F_MODSW_MPSAFE 0x4 Non-MP-safe drivers need funneling

The synchronization-level codes are described in the /usr/include/sys/strconf.h file.

go [Address]

go Continue running at the IAR
g 1000 Set the IAR to 1000 and begin running there

This subcommand resumes running after a breakpoint. Use it to set the Instruction Address
Register (IAR) to a new address and begin running there. If this subcommand is used with
no parameters after the debugger was entered via a fatal system error, a system dump will
be generated and the machine will halt.

help
help Display the list of valid commands

This subcommand displays one line for each debugger command.

loop [Iterations]

loop 2 Run until the second time the IAR has
the current value

The loop subcommand is similar to setting a breakpoint at the current IAR, but allows you to
stop on a specified instance that the IAR returns to the current point. For example, if the IAR
is at the beginning of a function, entering the command:

loop 6

causes the program to continue running and allows the IAR to return to the current point five
times without entering the debugger. Upon returning for a sixth time, running stops and the
debugger is entered.

map [Address | Symbol]

map Display the system loadlist
m e3000000 Display symbol with value closest to

E3000000
map execexit Display the value of the symbol ”execexit”

This subcommand displays information from the system loadlist (the list of symbols exported
from the kernel). If you do not specify any parameters, the command displays the entire
loadlist one page at a time. If you specify an address, the command displays the symbol
value which is closest to, but less than, the address. Since map only knows of symbols
which were exported from the kernel, this information may not be exact. If you specify a
symbol name, the command searches the loadlist for the symbol, and displays any entries
(there can be more than one) that match.

The symbol value for a data structure is the address of the data structure. The symbol value
for a function is not the address of the function. Instead, it is the address of the function
descriptor for that function. The first word of the function descriptor is the address of the
function.
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For example, if:

map execexit

displays 0x1000, then:

display 1000

displays the address of the function execexit.

mblk [Address]
mblk Display M_BLK, MBDATA, and address of mh_freelater
mblk 0005ec80 Display contents of mblock structure at address 0005ec80

The mblk subcommand displays the contents of the message block structure msgb that is
defined in the /usr/include/sys/stream.h file.  If you do not specify an address, the
command displays the contents of the message blocks of type M_MBLK and M_MBDATA,
and  displays the address of mh_freelater.  mh_freelater is a pointer to the message blocks
that have just been freed and are scheduled to be given back to the system, but have not
yet been given back.

All output values are printed in hexadecimal format.

next [ByteCount]
next Increment the IAR by 4
n 20 Increment the IAR by 20

This subcommand increments the Instruction Address Register (IAR) by the specified
amount.

origin Expression
origin 178D Set the origin to 178D
o 592cc Set the origin to 592cc

This subcommand sets the origin variable to the value of the specified expression. Use the
origin subcommand to match addresses with assembly language listings, which express
addresses as offsets from the start of the file. Set the origin to the address in the settable of
the first function in the assembly listing. Offsets from the origin are equivalent to offsets into
the assembly listing. This is useful if you wish to know where the instruction you are about to
run is in the listing.

ppd [ProcessorNumber]
ppd Display the current processor structures
ppd 2 Display processor 2’s structures

This subcommand displays the per-processor data structures of the given processor, or of
the current processor (as specified by the cpu subcommand) by default.

proc [PID]
p Display the process table
proc 1 Display the process table entry for

process with process id 1

The proc subcommand with no arguments displays one line for each process in the process
table (similar to the ps command), with an * (asterisk) placed next to the currently running
process on the processor where the debugger is active. If you specify a process ID, the
subcommand displays a long listing of the process table entry. This listing shows every field
in use in the process table for that process table entry.
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queue Address
queue 59c1874      Display the queue structure at address 59c1874

The queue subcommand displays the contents of the STREAMS queue at the specified
address. Refer to the /usr/include/sys/stream.h file for the  queue structure definition.

In the output, values marked with X are printed in hexadecimal format.

quit
quit Clear all breakpoints and exit

The quit subcommand terminates the debug session. Use this subcommand when you
have completed debugging and want to clear all breakpoints. The quit subcommand
performs the following tasks:

• Clears all breakpoints.

• Issues the go subcommand, which generates a system dump if the debugger was
entered via a fatal system error.

reset Variable
reset foo Deletes the user–defined variable ”foo”

Resetting a variable effectively deletes it, and allows the variable slot to be used again.
Currently, 16 user-defined variables are allowed, and when they are all in use, you cannot
set any more. Variables that are not user-defined (such as registers) cannot be reset. If you
specify a variable that is not defined, the subcommand displays an error message.

screen [Track] [+ | – | Address | On Half | Off | On ]

screen + Display the next 112 bytes of memory
screen – Display the previous 112 bytes of memory
s 20000ff7 Display memory starting at 20000ff7
s 200> Display memory at address contained in

location 200 (one level of indirection)
screen on Turns on the display
screen off Turns off the display
screen on half Display format uses about 1/2 the screen
sc track r3 Tracks memory starting at the value in

general purpose register 3

The screen subcommand controls which information is displayed, and how much at a time.
If you do not specify any parameters, the subcommand shows the current screen format
(which may have been scrolled by some other command). Use the parameters to select
another area of memory to display, to modify the format of the screen so that only half of the
physical screen is used, or even turn off the screen display entirely. The format modification
parameters are useful if important information can be scrolled off the screen when the
debugger is entered. Restore the default (full) screen by entering:

screen on

The track option changes the address that the screen displays as the expression that is
being tracked changes. This option is useful in a case where, at a breakpoint, the memory to
be displayed is addressed by a register.
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set Variable | Register Value

set start 100 Assign value 100 to variable ”start”
set r12 0 Set general purpose register 12 to 0
se s3  10000 Set segment register 3 to 10000
set iar 45F0 Assign 45F0 to the IAR
se name ”AIX” Assign string ”AIX” to variable ”name”

This subcommand sets debugger variables. Use the set subcommand to create new
variables or modify the value of old variables. Certain debugger variables are symbolic
names for machine registers, which you can modify. They are iar, r0 through r31 (for
general purpose registers), lr (link register), s0 through s15 (segment registers), frp0
through fpr31 (floating point registers), fpscr, dsisr, dar, eim0, eim1, eis0, eis1, mq, msr,
cr, ctr, tid, xer, sdr0, sdr1, rtcu, rtcl, and dec.

sregs
sregs Display the segment registers

The sregs subcommand creates a display similar to the screen subcommand, but shows
the segment registers along with certain other registers.

st Address Word
st 1000 5 Store the 32–bit value 5 at address 1000

The st subcommand stores a 32-bit value to memory. This is similar to the alter
subcommand, but the word size is implicit in the command.

stc Address Byte
stc 1000 ff Store the 8 bit value FF at address 1000

The stc subcommand stores a single byte at the specified address. This is similar to the st
subcommand.

sth Address Halfword
sth 1000 0014 Store the 16 bit value 14 at address 1000

The sth subcommand stores a halfword at the specified address. This is similar to the st
subcommand.

stack [ThreadID]
stack Format any existing stack frames
sta 25 Format stack frames for the thread with ID 25

This subcommand formats the stack frames for the specified (or by default, the currently
running) thread. Stack frames show return addresses. Use them to trace the program’s
calling sequence. Be aware that the first few parameters to the called functions are passed
in registers, and are not usually available on the stack. Generally, only the chain (stack
back-chain pointer) and return address (caller of the owner of this stack frame) are valid.

To thoroughly interpret the stack, you must use the assembly language listing for a
procedure to determine what is stored on the stack. Stack frames for the specified thread
are not always accessible.

step [s | Number]
step Single step the processor
step s Single step (skip over a subroutine call)
ste 20 Step for 20 instructions
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The step subcommand allows the processor to single step (run a single instruction). Use the
s parameter to skip over subroutine calls and follow the main flow of control. Use an integer
parameter to specify the number of instructions to run before returning control to the
debugger.

stream [Address]
stream           Display all entries in the stream head table
str 59b2e00      Display the stream head table at address 59b2e00

The stream subcommand displays the contents of the stream head table. If no address is
specified, the subcommand displays every stream found in the STREAMS hash table. If the
address is specified, the subcommand displays the contents of the stream head stored  at
that address.

The information printed is contained in an internal structure.  The following members of this
internal structure are described here:

sth Address of stream head
wq Address of streams write queue
rq Address of streams read queue
dev Associated device number of the stream
read mode Read mode
write mode Write mode
close_wait_timeout

Close wait timeout in microseconds
read error Read error on the stream
write_error Write error on the stream
flags Stream head flag values
push_cnt Number of modules pushed on the stream
wroff Write offset to prepend M_DATA
ioc_id ID of outstanding M_IOCTL request
ioc_mp Outstanding ioctl message
next Next stream head on the link
pollq List of active polls
sigsq List of active M_SETSIGs
shttyp Pointer to tty information

The read_mode and write_mode values are defined in the /usr/include/sys/stropts.h file.

The read_error and write_error variables are integers defined  in the
/usr/include/sys/errno.h file.

The flags structure member, if set, is based on combinations of the following values:

#define Value Description
F_STH_READ_ERROR 0x0001 M_ERROR with read error received, fail all read calls
F_STH_WRITE_ERROR 0x0002 M_ERROR with write error received, fail all writes
F_STH_HANGUP 0x0004 M_HANGUP received, no more data
F_STH_NDELON 0x0008 Do TTY semantics for ONDELAY handling
F_STH_ISATTY 0x0010 This stream acts a terminal
F_STH_MREADON 0x0020 Generate M_READ messages
F_STH_TOSTOP 0x0040 Disallow background writes (for job control)
F_STH_PIPE 0x0080 Stream is one end of a pipe or FIFO
F_STH_WPIPE 0x0100 Stream is the “write” side of a pipe
F_STH_FIFO 0x0200 Stream is a FIFO
F_STH_LINKED 0x0400 Stream has one or more lower streams linked
F_STH_CTTY 0x0800 Stream controlling tty
F_STH_CLOSED 0x4000 Stream has been closed, and should be freed
F_STH_CLOSING 0x8000 Actively on the way down
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In the output, values marked with X are printed in hexadecimal format.

swap PortNumber
swap 1 Switch display to RS–232 port 1

The swap subcommand allows you to transfer control of the debugger to another terminal.
The parameter is the port number. Specify 1 for port 1 (s0) or 2 for port 2 (s1).

thread [ProcessID | ThreadID]
This subcommand displays the contents of the kernel thread table. If a process ID is given,
all the kernel threads belonging to the process are shown. If a thread ID is given, only
information about that kernel thread is shown. If no parameter is given, all kernel threads in
the kernel thread table are displayed.

trace
trace Display the kernel trace buffers

The trace subcommand displays the last 128 entries of the kernel trace buffers. Currently
there are eight trace channels that can trace any combination of events. Event entries are
placed in a trace buffer before they are written out to disk (if they are logged to disk), or the
buffers are used in a circular fashion and reused when full. The trace subcommand allows
you to examine the trace headers which contain pointers into the trace buffers. The
subcommand shows the trace entries and gives hook IDs in text form and data in hex.

trb
trb Display timer request block information

This subcommand shows a menu of commands to display timer request block information.

tty [–d] [–l] [–e] [Name | Major [Minor]]
Displays the tty structures. If no parameters are specified, a short list of all open terminals is
displayed. Selected terminals can be displayed by specifying the terminal name, such as
tty1, or a major number with optional minor number. The flags modify the displayed
information: the –d flag displays driver information; the –l flag displays line discipline
information; and the –e flag displays information for every module or driver present in the
stream for the selected lines.

user [TID]
user Display current user area
u 315 Display user area for thread with thread ID 315

This subcommand displays the user area for the currently running thread. If you specify a
thread ID, the subcommand displays the user area for that thread.

uthread [ThreadID]
This subcommand displays the uthread structure of the given thead, or of the current thread
by default.

vars
vars Display current user–defined variables

This subcommand displays a list of the user-defined debugger variables. The subcommand
displays the variable name and value, and an indication of what is the base of the value.
Since the value 10 can be either decimal or hexadecimal it is displayed as HEX/DEC. The
subcommand displays string variables with no quotes around the string value.
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vmm
vmm Display virtual memory data structures

This subcommand displays a menu of commands for examining the virtual memory data
structures. Useful information such as the number of free pages is available.

xlate VirtualAddress
xlate 10054000 Translate virtual 10054000 to a real address

This subcommand translates a virtual address to a real address.

Numeric Values and Strings
All subcommands, except loop and step, require numeric options in hexadecimal. The loop
and step subcommands take decimal values. Decimal numbers must either be decimal
constants, variables, or expressions involving constants and variables.

A string is either a hexadecimal constant or a character constant. Use double quotes to
delimit the string from other data.

Variables
Variable names must start with a letter and can be up to eight characters long. Variable
names cannot contain special symbols. Variables usually represent locations or values
which are used again and again. A variable must not represent a valid number. Use the set
subcommand to define and initialize variables. Variables can contain from 1 to 4 bytes of
numeric data or up to 32 characters of string data. You can release a variable with the reset
subcommand. You cannot use the reset subcommand with reserved variables.

For example:

set name 1234 Sets your variable called name=1234
set s8 820c00e0 Sets seg reg 8 to point to the IOCC

Note that s8 is a reserved variable.

Reserved Variables
There is a set of variables that have a reserved meaning for the kernel debug program. You
can reference and change these variables, but they represent the actual hardware registers.
There are also two variables (fx and org) reserved for use by the kernel debug program,
which can be changed or set. If you change the segment registers or the general purpose
registers while in the kernel debug program, the change remains in effect when you leave
the kernel debug program. The reserved variables are:

bat0l BAT register 0, lower

bat0u BAT register 0, upper

bat1l BAT register 1, lower

bat1u BAT register 1, upper

bat2l BAT register 2, lower

bat2u BAT register 2, upper

cr Condition register.

ctr Count register.

dar Data address register.

dec Decrementer.

dsier Data storage interrupt error register.
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dsisr Data storage interrupt status register.

eim0 External interrupt mask (low).

eim1 External interrupt mask (high).

eis0 External interrupt summary (low).

eis1 External Interrupt summary (high).

fp0–fp31 Floating point registers 0 through 31.

fpscr Floating point status and control register.

fx Address of the last item found by the find subcommand.

iar Instruction Address Register (program counter). Points to the current
instruction.

lr Link register.

mq Multiply quotient.

msr Machine State register.

org The current value of origin. It is useful to set this to the program load point.

peis0 Pending external interrupt status register 0.

peis1 Pending external interrupt status register 1.

r0 – r31 General Purpose Registers 0 through 31. These registers have the
following usage conventions:

r0 Used on prologs. Not preserved across calls.

r1 Stack pointer. Preserved across calls.

r2 TOC. Preserved across calls.

r3 – r10 Parameter list for a procedure call. The first argument is r3,
the second is r4 and so on until r10 is the 8th argument.
These registers are not preserved across calls.

r11 Scratch. Pointer to FCN; DSA pointer to
int proc(env).

r12 PL8 exception return. Value preserved across calls.

r13–r31 Scratch. Value preserved across calls.

rtcl Real Time clock (nano seconds).

rtcu Real Time clock (seconds).

s0–s15 Segment registers. If a segment register is not in use, it has a value of
007FFFFF.

sdr0 Storage description register 0.

sdr1 Storage description register 1.

srr0 Machine status save/restore 0.

srr1 Machine status save/restore 1.

tbl Time base register, lower

tbu Time base register, upper
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tid Transaction register (fixed point).

xer Exception register (fixed point).

xirr External interrupt request register.

Expressions
The kernel debug program does not allow full expression processing. Expressions can only
contain decimal or hex constants, variables and operators. The variable operators include:

+ addition
– subtraction
* multiplication
/ division
> dereference

The > operator indicates that the value of the preceding expression is to be taken as the
address of the target value. The contents of the address specified by the evaluated
expression are used in place of the expression.

You can enter expressions in the form Expression(Expression). This form causes the two
expressions to be evaluated separately and then added together. This form is similar to the
base address syntax used in the assembler.

Expressions are processed from left to right only. The type of data specified must be the
same for all terms in the expression.

Pointer Dereferences
A pointer dereference can refer indirectly to the contents of a memory location. For example,
assume location 0xC50 contains a counter. Use an expression of the form:

c50>

to refer to the counter. You can put any expression before the >, including an expression
involving another >. In this case, it indicates multiple levels of indirection. To extend the
previous example, if location FF7 contains the value C50, the expression:

ff7>>

refers to the previously discussed counter.

Breakpoints
The debugger creates a table of breakpoints that it internally maintains. The break
subcommand creates breakpoints. The clear subcommand clears breakpoints. When the
breakpoint is set, the debugger replaces the corresponding instruction with the trap
instruction. A breakpoint can only be set if the instruction is not paged out.

Breakpoints should not be set in any code used by the debugger.

For more information, see “Setting Breakpoints” on page 14-45.

Maps and Listings
The assembler listing and the map files are essential tools for debugging using the kernel
debugger. In order to create the assembly list file during compilation use the –qlist option
while compiling. Also use the –qsource option to get the C source listing in the same file:

cc –c –DEBUG –D_KERNEL –DIBMR2 demodd.c –qsource –qlist
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In order to obtain the map file, use the –bmap:FileName option on the link editor, enter:

ld –o demodd demodd.o –edemoconfig –bimport:/lib/kernex.exp \
–lsys  –lcsys –bmap:demodd.map –bE:demodd.exp

You can also create a map file with a slightly different format by using the nm command. For
example, use the following command to get a map listing for the kernel (/unix):

nm –xv /unix > unix.m

Compiler Listing
The assembler and source listing is used to correlate any C source line with the
corresponding assembler lines. The following is a portion of the C source code for a sample
device driver. The left column is the line number in the source code:

.

.
185
186 if (result = devswadd(devno, &demo_dsw)){
187 printf(”democonfig : failed to add entry points\n”);
188 (void)devswdel(devno);
189 break;
190 }
191 dp–>inited = 1;
192 demos_inited++;
193 printf(”democonfig : CFG_INIT success\n”);
194 break;
195
.
.

The following is a portion of the assembler listing for the corresponding C code shown
previously. The left column is the C source line for the corresponding assembler statement.
Each C source line can have multiple assembler source lines. The second column is the
offset of the assembler instruction with respect to the kernel extension entry point.
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.

.
186| 000218 l     80610098  2  L4Z   gr3=devno(gr1,152)
186| 00021C cal   389F0000  1  LR    gr4=gr31
186| 000220 bl    4BFFFDE1  0  CALL  gr3=devswadd,2,
gr3,(struct_4198576)”,gr4,devswadd”,gr1,cr[01567],gr0”,
gr4”–gr12”,fp0”–fp13”
186| 000224 cror  4DEF7B82  1
186| 000228 st    9061005C  2  ST4A  #2357(gr1,92)=gr3
186| 00022C st    9061003C  1  ST4A  result(gr1,60)=gr3
186| 000230 l     8061005C  1  L4A   gr3=#2357(gr1,92)
186| 000234 cmpi  2C830000  2  C4    cr1=gr3,0
186| 000238 bc    41860020  3  BT    CL.16,cr1,0x4/eq
187| 00023C ai    307F01A4  1  AI    gr3=gr31,420
187| 000240 bl    4BFFFDC1  2  CALL  gr3=printf,1,’democonfig :
failed to add entry points”,gr3,printf”,gr1,cr[01567],gr0”,
gr4”–gr12”,fp0”–fp13”
187| 000244 cror  4DEF7B82  1
188| 000248 l     80610098  2  L4Z   gr3=devno(gr1,152)
188| 00024C bl    4BFFFDB5  0  CALL  gr3=devswdel,1,gr3,
devswdel”,gr1,cr[01567],gr0”,gr4”–gr12”,fp0”–fp13”
188| 000250 cror  4DEF7B82  1
189| 000254 b     48000104  0  B     CL.6
186|                           CL.16:
191| 000258 l     80810040  2  L4Z   gr4=dp(gr1,64)
191| 00025C cal   38600001  1  LI    gr3=1
191| 000260 stb   98640004  1  ST1Z  (char)(gr4,4)=gr3
192| 000264 l     8082000C  1  L4A   gr4=.demos_inited(gr2,0)
192| 000268 l     80640000  2  L4A   gr3=demos_inited(gr4,0)
192| 00026C ai    30630001  2  AI    gr3=gr3,1
192| 000270 st    90640000  1  ST4A  demos_inited(gr4,0)=gr3
193| 000274 ai    307F01D0  1  AI    gr3=gr31,464
193| 000278 bl    4BFFFD89  0  CALL  gr3=printf,1,’democonfig :
CFG_INIT success”,gr3,printf”,gr1,cr[01567],gr0”,gr4”–gr12”,
fp0”–fp13”
193| 00027C cror  4DEF7B82  1
194| 000280 b     480000D8  0  B     CL.6
.
.

Now with both the assembler listing and the C source listing, you can determine the
assembler instruction for a C statement. As an example, consider the C source line at line
191 in the sample code:

191 dp–>inited = 1;

The corresponding assembler instructions are:

191| 000258 l     80810040  2  L4Z   gr4=dp(gr1,64)
191| 00025C cal   38600001  1  LI    gr3=1
191| 000260 stb   98640004  1  ST1Z  (char)(gr4,4)=gr3

The offsets of these instructions within the sample device driver (demodd) are 000258,
00025C, and 000260.

Map File
The binder map file is a symbol map in address order format. Each symbol listed in the map
file has a storage class (CL) and a type (TY) associated with it.

Storage classes correspond to the XMC_XX variables defined in the syms.h file. Each
storage class belongs to one of the following section types:
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.text Contains read-only data (instructions). Addresses listed in this section use
the beginning of the .text section as origin. The .text section can contain
one of the following storage class (CL) values:

DB Debug Table. Identifies a class of sections that has the
same characteristics as read only data.

GL Glue Code. Identifies a section that has the same
characteristics as a program code. This type of section has
code to interface with a routine in another module. Part of
the interface code requirement is to maintain TOC
addressability across the call.

PR Program Code. Identifies the sections that provide
executable instructions for the module.

R0 Read Only Data. Identifies the sections that contain
constants that are not modified during execution.

TB Reserved.

TI Reserved.

XO Extended Op. Identifies a section of code that is to be
treated as a pseudo-machine instruction.

.data Contains read-write initialized data. Addresses listed in this section use the
beginning of the .data section as origin. The .data section can contain one
of the following storage class (CL) values:

DS Descriptor. Identifies a function descriptor. This information
is used to describe function pointers in languages such as
C and Fortran.

RW Read Write Data. Identifies a section that contains data that
is known to require change during execution.

SV SVC. Identifies a section of code that is to be treated as a
supervisory call.

T0 TOC Anchor. Used only by the predefined TOC symbol.
Identifies the special symbol TOC. Used only by the TOC
header.

TC TOC Entry. Identifies address data that will reside in the
TOC.

TD TOC Data Entry. Identifies data that will reside in the TOC.

UA Unclassified. Identifies data that contains data of an
unknown storage class.

.bss Contains read-write uninitialized data. Addresses listed in this section use
the beginning of the .data section as origin. The .bss section contain one of
the following storage class (CL) values:

BS BSS class. Identifies a section that contains uninitialized
data.

UC Unnamed Fortran Common. Identifies a section that
contains read write data.

Types correspond to the XTY_XX variables defined in the syms.h file. The type (TY) can be
one of the following values:



14-44 AIX Version 4.1 Writing a Device Driver

ER External Reference

LD Label Definition

SD Section Definition

CM BSS Common Definition

The following is a map file for a sample device driver:

1  ADDRESS MAP FOR demodd
2                                               SOURCE–FILE(OBJECT) or
   *IE ADDRESS  LENGTH AL CL TY Sym# NAME       IMPORT–FILE{SHARED–OBJECT}
3  ––– –––––––– –––––– –– –– –– –––– –––––––––– ––––––––––––––––––––––––––
4   I                        ER S1   pinned_heap  /lib/kernex.exp{/unix}
5   I                        ER S2   devswadd     /lib/kernex.exp{/unix}
6   I                        ER S3   devswdel     /lib/kernex.exp{/unix}
7   I                        ER S4   nodev        /lib/kernex.exp{/unix}
8   I                        ER S5   printf       /lib/kernex.exp{/unix}
9   I                        ER S6   uiomove      /lib/kernex.exp{/unix}
10  I                        ER S7   xmalloc      /lib/kernex.exp{/unix}
11  I                        ER S8   xmfree       /lib/kernex.exp{/unix}
12     00000000 0008B8  2 PR SD S9   <>      
/tmp/cliff/demodd/demodd.c(demodd.o)
13     00000000           PR LD S10  .democonfig
14     0000039C           PR LD S11  .demoopen
15     000004B4           PR LD S12  .democlose
16     000005D4           PR LD S13  .demoread
17     00000704           PR LD S14  .demowrite
18     00000830           PR LD S15  .get_dp
19     000008B8 000024  2 GL SD S16  <.printf>    glink.s(/usr/lib/glink.o)
20     000008B8           GL LD S17  .printf
21     000008DC 000024  2 GL SD S18  <.xmalloc>   glink.s(/usr/lib/glink.o)
22     000008DC           GL LD S19  .xmalloc
23     00000900 000090  2 PR SD S20  .bzero  
noname(/usr/lib/libcsys.a[bzero.o])
24     00000990 000024  2 GL SD S21  <.uiomove>   glink.s(/usr/lib/glink.o)
25     00000990           GL LD S22  .uiomove
26     000009B4 000024  2 GL SD S23  <.devswadd>  glink.s(/usr/lib/glink.o)
27     000009B4           GL LD S24  .devswadd
28     000009D8 000024  2 GL SD S25  <.devswdel>  glink.s(/usr/lib/glink.o)
29     000009D8           GL LD S26  .devswdel
30     000009FC 000024  2 GL SD S27  <.xmfree>    glink.s(/usr/lib/glink.o)
31     000009FC           GL LD S28  .xmfree
32     00000000 000444  4 RW SD S29  <_/tmp/cliff/demodd/demodd$c$>
/tmp/cliff/demodd/demodd.c(demodd.o)
33     00000450 000004  4 RW SD S30  demo_dev
/tmp/cliff/demodd/demodd.c(demodd.o)
34     00000460 000004  4 RW SD S31  demos_inited
/tmp/cliff/demodd/demodd.c(demodd.o)
35     00000470 000080  4 RW SD S32  data
/tmp/cliff/demodd/demodd.c(demodd.o)
36 * E 000004F0 00000C  2 DS SD S33  democonfig
/tmp/cliff/demodd/demodd.c(demodd.o)
37   E 000004FC 00000C  2 DS SD S34  demoopen
/tmp/cliff/demodd/demodd.c(demodd.o)
38   E 00000508 00000C  2 DS SD S35  democlose
/tmp/cliff/demodd/demodd.c(demodd.o)
39   E 00000514 00000C  2 DS SD S36  demoread
/tmp/cliff/demodd/demodd.c(demodd.o)
40   E 00000520 00000C  2 DS SD S37  demowrite
/tmp/cliff/demodd/demodd.c(demodd.o)
41     0000052C 000000  2 T0 SD S38  <TOC>
42     0000052C 000004  2 TC SD S39  <_/tmp/cliff/demodd/demodd$c$>
43     00000530 000004  2 TC SD S40  <printf>
44     00000534 000004  2 TC SD S41  <demo_dev>
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45     00000538 000004  2 TC SD S42  <demos_inited>
46     0000053C 000004  2 TC SD S43  <data>
47     00000540 000004  2 TC SD S44  <pinned_heap>
48     00000544 000004  2 TC SD S45  <xmalloc>
49     00000548 000004  2 TC SD S46  <uiomove>
50     0000054C 000004  2 TC SD S47  <devswadd>
51     00000550 000004  2 TC SD S48  <devswdel>
52     00000554 000004  2 TC SD S49  <xmfree>

In the sample map file listed previously, the .data section starts from the statement at
line 32:

32     00000000 000444  4 RW SD S29 <_/tmp/cliff/demodd/demodd$c$>
/tmp/cliff/demodd/demodd.c(demodd.o)

The TOC (Table of Contents) starts from the statement at line 41:

41     0000052C 000000  2 T0 SD S38 <TOC>

Using the Debugger
This section contains information on setting breakpoints, viewing and modifying global data,
displaying registers, and using the stack trace.

Setting Breakpoints
Setting a breakpoint is essential for debugging kernel or kernel extensions. To set a
breakpoint, use the following sequence of steps:

1. Locate the assembler instruction corresponding to the C statement.

2. Get the offset of the assembler instruction from the listing.

3. Locate the address where the kernel extension is loaded.

4. Add the address of the assembler instruction to the address where kernel extension is
loaded.

5. Set the breakpoint with the break command.

The process of locating the assembler instruction and getting its offset is explained in the
previous section. The next step is to get the address where the kernel extension is loaded.

Determine the Location of your Kernel Extension
To determine the address where a kernel extension has been loaded, use the following
procedure. First, find the load point (the entry point) of the executable kernel extension. This
is a label supplied with the –e option for the ld (links objects) command used while
generating the kernel extension. In our example this is the democonfig routine.

Then use one of the following six methods to locate the address of this load point. This
address is the location where the kernel extension is loaded.

Method 1
If the kernel extension is a device driver, use the drivers subcommand to locate the address
of the load point routine. The drivers subcommand lists all the function descriptors and the
function addresses for the device driver (that are in the dev switch table). Usually the config
routine will be the load point routine. Hence in our example the function address for the
config (democonfig) routine is the address where the kernel extension is loaded.
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> drivers 255
MAJ#255 Open Close Read Write
func desc 0x01B131B0 0x01B131BC 0x01B131C8 0x01B131D4
func addr 0x01B12578 0x01B126A0 0x01B127D4 0x01B12910

Ioctl Strategy Tty Select
func desc 0x00019F10 0x00019F10 0x00000000 0x00019F10
func addr  0x00019A20 0x00019A20 0x00019A20

Config Print Dump Mpx
func desc  0x01B131A4 0x00019F10 0x00019F10 0x00019F10
func addr  0x01B121EC 0x00019A20 0x00019A20 0x00019A20

Revoke Dsdptr Selptr Opts
func desc 0x00019F10 0x00000000 0x00000000 0x00000002
func addr 0x00019A20

Method 2
Another method to locate the address is to use the value of the kmid pointer returned by the
sysconfig(SYS_KLOAD) subroutine when loading the kernel extension. The kmid pointer
points to the address of the load point routine. Hence to get the address of the load point,
print the kmid value during the sysconfig call from the configuration method. Then go into
the low level debugger and display the value pointed to by kmid. For clarity, set mnemonics
for kmid.

> set kmid 1b131a4
> vars
Listing of the User–defined variables:
  kmid HEX=01B131A4
  fx HEX/DEC=01B1256E
  org 
There are 15 free variable slots.
> d kmid
01B131A4   01B121EC 01B131E0 00000000 01B12578
|..!...1.......%x|
> d kmid>
01B121EC   7C0802A6 BFC1FFF8 90010008 9421FF80
||............!..|

Method 3
If kmid is also not known, use the find subcommand to locate the load point routine:

> find democonfig 1b00000
01B1256E   66616B65 636F6E66 69677C08 02A693E1
|democonfig|.....|

The find subcommand will locate the specified string. It initiates a search from the starting
address specified in the command. The string that is located is at the end of the
democonfig routine. Now, backup to locate the beginning of the routine.

Usually all procedures have the instruction 7C0802A6 within the first three or four
instructions of the procedure (within the first 12 to 16 bytes). See the assembler listing for
the actual position of this instruction within the procedure. Use the screen subcommand
with the – flag to keep going back to locate the instruction. You can help speed up your
search by using the ASCII section of the screen output to look for occurrences of the pipe
symbol (|), which corresponds to the hexadecimal value 7C, the first byte of the instruction.
Once this instruction is found, you can figure out where the start of the procedure is using
the assembler listing as a guide.
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> screen fx 
GPR0 000078E4 2FF7FF70 000C5E78 00000000 2FF7FFF8 00000000 00007910 DEADBEEF
GPR8 DEADBEEF DEADBEEF DEADBEEF 7C0802A6 DEADBEEF DEADBEEF DEADBEEF DEADBEEF
GPR16 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF
GPR24 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF 00007910
MSR 000090B0 CR 00000000 LR 0002506C CTR 000078E4
MQ 00000000 XER 00000000 SRR0 000078E4 SRR1 000090B0 DSISR 40000000
DAR 30000000 IAR 000078E4 (ORG+000078E4) ORG=00000000 Mode: VIRTUAL
000078E0 00000000 48000000 4E800020 00000000 |....H...N.. ....|
                      |  b  0x78E4 (000078E4)
000078F0 000C0000 00000000 00000000 00000000 |................|
                                |
01B12560 80020301 00000000 0000036C 000A6661 |...........l..fa|
01B12570 6B65636F 6E666967 7C0802A6 93E1FFFC |keconfig|.......|
01B12580 90010008 9421FFA0 83E20000 90610078 |.....!.......a.x|
01B12590 9081007C 90A10080 90C10084 307F0294 |...|........0...|
01B125A0 48000535 80410014 80610078 5463043E |H..5.A...a.xTc.>|
01B125B0 90610038 80610078 48000491 9061003C |.a.8.a.xH....a.<|
01B125C0 28830000 41860020 8061003C 88630004 |(...A.. .a.<.c..|

> screen –
.
.
>
>
GPR0 000078E4 2FF7FF70 000C5E78 00000000 2FF7FFF8 00000000 00007910 DEADBEEF
GPR8 DEADBEEF DEADBEEF DEADBEEF 7C0802A6 DEADBEEF DEADBEEF DEADBEEF DEADBEEF
GPR16 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF
GPR24 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF 00007910
MSR 000090B0 CR 00000000 LR 0002506C CTR 000078E4 MQ 00000000
XER 00000000 SRR0 000078E4 SRR1 000090B0 DSISR40000000 DAR 30000000
IAR 000078E4 (ORG+000078E4) ORG=00000000 Mode: VIRTUAL
000078E0 00000000 48000000 4E800020 00000000 |....H...N.. ....|

 |  b 0x78E4 (000078E4) 
000078F0 000C0000 00000000 00000000 00000000 |................|

|
01B121E0 00000000 00000000 00000000 7C0802A6 |............|...|
01B121F0 BFC1FFF8 90010008 9421FF80 83E20000 |.........!......|
01B12200 90610098 9081009C 90A100A0 307F0040 |.a..........0..@|
01B12210 80810098 480008C1 80410014 307F0058 |....H....A..0..X|
01B12220 83C20008 63C40000 80A2000C 80C20010 |....c...........|
01B12230 480008A5 80410014 63C30000 80810098 |H....A..c.......|
01B12240 5484043E 90810038 38800000 9081003C |T..>...88......<|

The start of the democonfig routine is at 0x01B121EC.

Method 4
If the load point routine is an exported routine, use the map subcommand to locate the
appropriate routine:

>map <routine name>

Method 5
You can also use the crash command to locate the load point. After running the crash
command, run the le subcommand to list the load point for all the kernel extensions. The
knlist subcommand will list the addresses of exported symbols:

$ crash
>le
>quit

The le subcommand shows the module start address. The first procedure in the kernel
extension would follow the module header from the module start address. Hence in the case
of the example demodd kernel extension, le showed the module start address to be
0x01B12000 and the democonfig procedure starts at 0x01B121EC.
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You can locate the start of the democonfig procedure by searching for the first instruction of
the democonfig procedure which would be usually 0x7C0802A6. Use the assembly listing to
determine the first instruction.

First, display memory at 0x01b12000 and then use the screen subcommand to search
ahead.

>screen 01b12000
>screen +
.
.

Method 6
Use the find subcommand to search for a pattern:

> find democonfig 1b00000
01B1256E   66616B65 636F6E66 69677C08 02A693E1
|democonfig|.....|

We know that the module starts before 1B1256E. We also know that the “magic” number is
01DF. The loader identifies a file as a load module by looking for 01DF as the first two bytes
in the file. So, the greatest address which is less than 1B1256E that contains 01DF, will be
the start of the module, provided that it is on a page boundary. This means it has a mask of
FFFFF000, a 4096 boundary or 0x1000:

> find 01df 01900000 * 2

Search starting at 1900000 through the kernel storage (the *) for 01DF on a 2-byte
boundary.

The greatest address, on a page boundary, that is less than 1B1256E will be the module
start. This will be offset 00000000 in the map file.

Change the Origin
Set the origin to the address of the load point. By default this is zero. By changing the origin
to the address of the load point, you can directly correlate the address in the assembler
listing with the address for the Instruction Address Register (IAR) and break points.

>set fkcfg 1B121EC set a variable called fkcfg

>origin fkcfg

Set the Break Point
Now set the break point with the break subcommand. Assume that we want to set the
breakpoint at the assembler instruction at offset 218 (using the assembler listing):

>break +218 If origin has been set to load point

OR

>break 1B121EC+218

Viewing and Modifying Global Data
You can access the global data with two different methods. To understand how to locate the
address of a global variable, we use the example of our demodd device driver. Here we try
to view and modify the value of the data[ ] character array in the sample demodd device
driver.

Use the first method only when you break in a procedure for the kernel extension to be
debugged. You can use the second method at any time.
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Method 1
1. After getting into the low level debugger, set a break point at the demoread procedure

call. You can use any routine in demodd for this purpose.

2. Call the demoread routine. When the system breaks in demoread and invokes the
debugger, the GPR2 (general purpose register 2) points to the TOC address. Now use
the offset of the address of any global variable (from the start of TOC) to determine its
address. The TOC is listed in the map file.

The map file on page 14-44 shows that the address of the data[ ] array is at 0x53C while
the TOC is at 0x52C. The offset of the address of the data[ ] array with respect to the
start of TOC is 0x53C – 0x52C = 0x10. Hence the address of the data[ ] variable is at
(r2+10). And the actual data[ ] variable is located at the address value in (r2 + 10):

> d r2
01B131E0 01B12CCC 0004E7D0 01B13114 01B1311C |..,.......1...1.|
> d r2+10>
01B13124 61626364 65666768 696A6B6C 6D6E6F70 |abcdefghijklmnop|

Now we can change the value of the data[] variable. As an example, we change the first
four bytes of data[ ] to “pppp” (p = 70):

> st r2+10> 70707070
> d r2+10>
01B13124 70707070 65666768 696A6B6C 6D6E6F70 |ppppefghijklmnop|

Method 2
You can use this method at any time. This method requires the map file and the address at
which the relevant kernel address has been loaded. This method currently works because of
the manner in which a kernel extension is loaded. But it may not work if the procedure for
loading a kernel extension changes.

The address of a variable is:

Address of the last
function before the
variable in the map file

Length of the
function

Offset of the
variable+ +

The following is the section of the map file (see page 14-44) showing the data[ ] variable and
the last function (xmfree) in the .text section:

26     000009B4 000024  2 GL SD S23  <.devswadd>  glink.s(/usr/lib/glink.o)
27     000009B4           GL LD S24  .devswadd
28     000009D8 000024  2 GL SD S25  <.devswdel>  glink.s(/usr/lib/glink.o)
29     000009D8           GL LD S26  .devswdel
30     000009FC 000024  2 GL SD S27  <.xmfree>    glink.s(/usr/lib/glink.o)
31     000009FC           GL LD S28  .xmfree
32     00000000 000444  4 RW SD S29  <_/tmp/cliff/demodd/demodd$c$>
/tmp/cliff/demodd/demodd.c(demodd.o)
33     00000450 000004  4 RW SD S30  demo_dev
/tmp/cliff/demodd/demodd.c(demodd.o)
34     00000460 000004  4 RW SD S31  demos_inited
/tmp/cliff/demodd/demodd.c(demodd.o)
35     00000470 000080  4 RW SD S32  data
/tmp/cliff/demodd/demodd.c(demodd.o)
36 * E 000004F0 00000C  2 DS SD S33  democonfig
/tmp/cliff/demodd/demodd.c(demodd.o)
37   E 000004FC 00000C  2 DS SD S34  demoopen
/tmp/cliff/demodd/demodd.c(demodd.o)
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The last function in the .text section is at lines 30–31. The offset address of this function
from the map is 0x000009FC (line 30, column 2). The length of the function is 0x000024
(line 30, column 3). The offset address of the data[ ] variable is 0x000000470 (line 35,
column 2). Hence the offset of the address of the data[ ] variable is:

0x000009FC + 0x000024 + 0x00000470 = 0x00000E90

Add this address value to the load point value of the demodd kernel extension. If, as in the
case of the sample demodd device handler, this is 0x1B131A4, then the address of the
data[ ] variable is:

0x1B121EC + 0x00000E90 = 0x1B1307C

>display 1B1307C
01B1307C  61626364 65666768 696A6B6C 6D6E6F70  |abcdefghijklmnop|

Now change the value of the data[ ] variable as in method 1.

Note that in method 1, using the TOC, you found the address of the address of data[ ], while
in method 2 you simply found the address of data[ ].

Displaying Registers on a Micro Channel Adapter
When you write a device driver for a new Micro Channel adapter, you often want to be able
to read and write to registers that reside on the adapter. This is a way of seeing if the
hardware is functioning correctly. For example, to examine a register on the Token Ring
adapter, first see where this adapter resides in the bus I/O space:

$lsdev –C

sys0 Available 00–00 System Object
sysunit0 Available 00–00 RISC System/6000 System Unit
sysplanar0 Available 00–00 CPU Planar
.
.
scsi0 Available 00–01 SCSI I/O Controller
tok0 Available 00–02 Token–Ring High–Performance Adapter
ent0 Available 00–03 Ethernet High–Performance LAN Adapter

$lsattr –l tok0 –E

bus_intr_lvl 3 Bus interrupt level False
intr_priority 3 Interrupt priority False
.
.
rdto 92 RECEIVE DATA TRANSFER OFFSET True
bus_io_addr 0x86a0 Bus I/O address False
dma_lvl 0x5 DMA arbitration level False
dma_bus_mem 0x202000 Address of bus memory used DMA False

We now know that the token ring adapter is located at 0x86A0.

To read a specific register, enter the kernel debugger and use the sregs subcommand to
display the segment registers. Find an unused segment register (=007FFFFF). For this
example, assume s9 is not used. Enable the Micro Channel bus addressing with the set
subcommand:

set s9 820c0020

Use the sregs subcommand to display the segment register values to check that you typed
it in correctly.



14-51Debugging Tools

From the POWERstation and POWERserver Hardware Technical Information-Options and
Devices, we know that the address of the Adapter Communication and Status register is
P6a6. The value of P is based on the Bus I/O address (bus_io_addr) of the adapter. In the
above example, this is 86A0. It could have been anything from 86A0 to F6A0 on a 0x1000
byte boundary. Hence P is 8, and the address of the Communication and Status register is
86A6. The display subcommand now displays the two-byte register:

d 900086a6 2

The key is to load a segment register with 820c0020 and then use that segment register to
reference registers and memory on your adapter. You can use the same method to access
registers resident on the IOCC. In that case, load the segment register with a value of
820c00e0.

Stack Trace
The stack trace gives the stack history which provides the sequence of procedure calls
leading to the current IAR. The Ret Addr is the address of the instruction calling this
procedure. You can use the map file to locate the name of the procedure. Note that the first
stack frame shown is almost always useless, since data either has not been saved yet, or is
from a previous call. The last function preceding the Ret Addr is the function that called the
procedure.

You can also use the map subcommand to locate the function name if the function was
exported. The map <addr> command locates the symbol before the given address. The
following is a concise view of the stack:

Low |                    |Stack grows at
Addresses |                    |this end.

|––––––––––––––––––––|
Callee’s stack –> 0 |     Back chain     |
pointer 4 |      Saved CR      |

8 |      Saved LR      |
 12–16 |      Reserved      |<–––LINK AREA (callee)
    20 |      SAVED TOC     |

|––––––––––––––––––––|
Space for P1–P8 |         P1         |  OUTPUT ARGUMENT AREA
is always reserved |        ...         |<–––(Used by callee to

|         Pn         |    construct argument
|      Callee’s      |
|       stack        | <––– LOCAL STACK AREA
|        area        |
|––––––––––––––––––––|
|                    | (Possible word wasted
|––––––––––––––––––––|    for alignment.)

–8*nfprs–4*ngprs ––> |   Caller’s GPR     | Rfirst = R13 for full
save |     save area      |          save

|    max 19 words    | R31
|––––––––––––––––––––|

–8*nfprs ––> |   Caller’s FPR     | Ffirst = F14 for a
|     save area      |          full save
|   max 18 dblwds    | F31
|––––––––––––––––––––|

Caller’s stack –> 0 |     Back chain     |
pointer 4 |      Saved CR      |

8 |      Saved LR      |
 12–16 |      Reserved      |<–––LINK AREA (caller)
    20 |      Saved TOC     |

|––––––––––––––––––––|
Space for P1–P8 24 |         P1         |  INPUT PARAMETER AREA
is always reserved |        ...         | <–––(Callee’s input

|         Pn         |     parameters found
|––––––––––––––––––––|      here. Is also
|      Caller’s      |   caller’s arg area.)
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|       stack        |
High |        area        |
Addresses |

The following is a sample stack history with a break in the sample demodd kernel
extension. The breakpoint was set at the start of the demoread routine at 0x1B127D4
(Beginning IAR). This was called from an instruction at 0x000824B0 (Ret Addr). This in turn
is called by the instruction at address 0x00085F54 (Ret Addr), and so on.

The low values of the addresses (0x000824B0 and 0x00085F54) suggest that the
instructions are in /unix. You can use the crash program and the le subcommand to
determine the right kernel extension that is loaded in an address range.

0x1b127d4 beginning demoread in demodd
0x000824b0 .rdevread in /unix
0x00085f54 .cdev_rdwr in /unix

> stack
Beginning IAR: 0x01B127D4      Beginning Stack: 0x2FF97C28
Chain:0x2FF97C88  CR:0x24222082  Ret Addr:0x000824B0  TOC:0x000C5E78
P1:0x2003F800  P2:0x2003F800  P3:0x0000008C  P4:0x00000001
P5:0x01B11200  P6:0x00000000  P7:0x2FF97D38  P8:0x00000000
2FF97C60   00000203 00000000 2FF97CF8 2FF7FCD0   |......../.|./...|
2FF97C70   29057E6B 00001000 2FF97DC0 018E8BE0   |).~k..../.}.....|
2FF97C80   00FF0000 00000000 2FF97CD8 22222044   |......../.|.”” D|
Returning to Stack frame at 0x2FF97C88
Press ENTER to continue or x to exit:

>

Chain:0x2FF97CD8  CR:0x22222044  Ret Addr:0x00085F54  TOC:0x00000000
P1:0x00000000  P2:0x018C41E0  P3:0x2FF97CF8  P4:0x2FF7FCC8
P5:0x000850E0  P6:0x00000000  P7:0xDEADBEEF  P8:0xDEADBEEF
2FF97CC0   DEADBEEF DEADBEEF 00000000 000BE4F8   |................|
2FF97CD0   001E70F8 000BE7A4 2FF97D28 000BE5AC   |..p...../.}(....|
Returning to Stack frame at 0x2FF97CD8
Press ENTER to continue or x to exit:
...
>
Chain:0x00000000  CR:0x22222022  Ret Addr:0x0000238C  TOC:0x00000000
P1:0x00000003  P2:0x30000000  P3:0x00000800  P4:0x00000000
P5:0x00000000  P6:0x00000000  P7:0x00000000  P8:0x00000000
Returning to Stack frame at 0x0
Press ENTER to continue or x to exit:
> Trace back complete.

Error Logging
The error facility allows a device driver to have entries recorded in the system error log.
These error log entries record any software or hardware failures that need to be available
either for informational purposes or for fault detection and corrective action. The device
driver, using the errsave kernel service, adds error records to the special file /dev/error.

The errdemon daemon then picks up the error record and creates an error log entry. When
you access the error log either through SMIT (System Management Interface Tool) or with
the errpt command, the error record is formatted according to the error template in the error
template repository and presented in either a summary or detailed report. See the Flow of
the Error Logging Facility figure on page 14-53 for an illustration of this.
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Precoding Steps to Consider
Follow three precoding steps before initiating the error logging process. It is beneficial to
understand what services are available to developers, and what the customer, service
personnel, and defect personnel see.

Determine the Importance of the Error
The first precoding step is to review the error-logging documentation and determine whether
a particular error should be logged. Do not use system resources for logging information that
is unimportant or confusing to the intended audience.

It is, however, a worse mistake not to log an error that merits logging. You should work in
concert with the hardware developer, if possible, to identify detectable errors and the
information that should be relayed concerning those errors.
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Determine the Text of the Message
The next step is to determine the text of the message. Use the errmsg command with the
–w flag to browse the system error messages file for a list of available messages. If you are
developing a product for wide-spread general distribution and do not find a suitable system
error message, you can submit a request to your supplier for a new message or follow the
procedures that your organization uses to request new error messages. If your product is an
in-house application, you can use the errmsg command to define a new message that
meets your requirements.

Determine the Correct Level of Thresholding
Finally, determine the correct level of thresholding. Each error to be logged, regardless of
whether it is a software or hardware error, can be limited by thresholding to avoid filling the
error log with duplicate information.

Side effects of runaway error logging include overwriting existing error log entries and
unduly alarming the end user. The error log is not unlimited in size. When its size limit is
reached, the log wraps. If a particular error is repeated needlessly, existing information is
overwritten, possibly causing inaccurate diagnostic analyses. The end user or service
person can perceive a situation as more serious or pervasive than it is if they see hundreds
of identical or nearly identical error entries.

You are responsible for implementing the proper level of thresholding in the device driver
code.

The error log currently equals 1MB. As shipped, it cleans up any entries older than 30 days.
In order to ensure that your error log entries are actually informative, noticed, and remain
intact, test your driver thoroughly.

Coding Steps
To begin error logging,

1. Select the error text.

2. Construct error record templates.

3. Add error logging calls into the device driver code.

Selecting the Error Text
The first task is to select the error text. After browsing the contents of the system message
file, three possible paths exist for selecting the error text. Either all of the desired messages
for the new errors exist in the message file, none of the messages exist, or a combination of
errors exists.

• If the messages required already exist in the system message file, make a note of the
four-digit hexadecimal identification number, as well as the message-set identification
letter. For instance, a desired error description can be:

SET E
E859 ”The wagon wheel is broken.”

• If none of the system error messages meet your requirements, and if you are responsible
for developing a product for wide-spread general distribution, you can either contact your
supplier to allocate new messages or follow the procedures that your organization uses to
request new messages. If you are creating an in-house product, use the errmsg
command to write suitable error messages and use the errinstall command to install
them. Refer to “Guidelines for Creating Software Product Installation Packages” in AIX
Version 4.1 General Programming Concepts Volume 1: Writing Programs for more
information. Take care not to overwrite other error messages.
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• It is also possible to use a combination of existing messages and new messages within
the same error record template definition.

Constructing Error Record Templates
The second step is to construct your error record templates. An error record template
defines the text that appears in the error report. Each error record template has the following
general form:

Error Record Template
+LABEL:

Comment =
Class =
Log =
Report =
Alert =
Err_Type =
Err_Desc =
Probable_Causes =
User_Causes =
User_Actions =
Inst_Causes =
Inst_Actions =
Fail_Causes =
Fail_Actions =
Detail_Data = <data_len>, <data_id>, <data_encodi

ng>

Each field in this stanza has well-defined criteria for input values. See the errupdate
command for more information. The fields are:

Label Requires a unique label for each entry to be added. The label must follow C
language rules for identifiers and must not exceed 16 characters in length.

Comment Indicates this is a comment field. You must enclose the comment in double
quotation marks; and it cannot exceed 40 characters.

Class Requires class values of H (hardware), S (software), or U (Undetermined).

Log Requires values True or False. If failure occurs, the errors are logged only if
this field value is set to True. When this value is False the Report and
Alert fields are ignored.

Report The values for this field are True or False. If the logged error is to be
displayed using error report, the value of this field must be True.

Alert Set this field to True for errors that need to be forwarded to the Network
Management Alert Manager program to generate an Alert. For errors that
are not alertable, set this field to False.

Err_Type Describes the severity of the failure that occurred. Possible values are
INFO, PEND, PERF, PERM, TEMP, and UNKN where:

INFO The error log entry is informational and was not the result of
an error.

PEND A condition in which it is determined that the loss of
availability of a device or component is imminent.

PERF A condition in which the performance of a device or
component was degraded below an acceptable level.
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PERM A permanent failure is defined as a condition that was not
recoverable. For example, an operation was retried a
prescribed number of times without success.

TEMP Recovery from this temporary failure was successful, yet
the number of unsuccessful recovery attempts exceeded a
predetermined threshold.

UNKN A condition in which it is not possible to assess the severity
of a failure.

Err_Desc Describes the failure that occurred. Proper input for this field is the four-digit
hexadecimal identifier of the error description message to be displayed from
SET E in the message file.

Prob_Causes Describes one or more probable causes for the failure that occurred. You
can specify a list of up to four Prob_Causes identifiers separated by
commas. A Prob_Causes identifier displays a probable cause text
message from SET P in the message file. List probable causes in the order
of decreasing probability. At least one probable cause identifier is required.

User_Causes Specifies a condition that an operator can resolve without contacting any
service organization. You can specify a list of up to four User_Causes
identifiers separated by commas. A User_Causes identifier displays a text
message from SET U in the message file. List user causes in the order of
decreasing probability. Leave this field blank if it does not apply to the failure
that occurred. If this field is blank, either the Inst_Causes or the
Fail_Causes field must not be blank.

User_Actions
Describes recommended actions for correcting a failure that resulted from a
user cause. You can specify a list of up to four recommended
User_Actions identifiers separated by commas. A recommended
User_Actions identifier displays a recommended action text message,
SET R in the message file. You must leave this field blank if the
User_Causes field is blank.

The order in which the recommended actions are listed is determined by the
expense of the action and the probability that the action corrects the failure.
Actions that have little or no cost and little or no impact on system operation
should always be listed first. When actions for which the probability of
correcting the failure is equal or nearly equal, list the least expensive action
first. List remaining actions in order of decreasing probability.

Inst_Causes Describes a condition that resulted from the initial installation or setup of a
resource. You can specify a list of up to four Inst_Causes identifiers
separated by commas. An Inst_Causes identifier displays a text
message, SET I in the message file. List the install causes in the order of
decreasing probability. Leave this field blank if it is not applicable to the
failure that occurred. If this field is blank, either the User_Causes or the
Failure_Causes field must not be blank.

Inst_Actions
Describes recommended actions for correcting a failure that resulted from
an install cause. You can specify a list of up to four recommended
Inst_actions identifiers separated by commas. A recommended
Inst_actions identifier identifies a recommended action text message,
SET R in the message file. Leave this field blank if the Inst_Causes field
is blank. The order in which the recommended actions are listed is
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determined by the expense of the action and the probability that the action
corrects the failure. See the User_Actions field for the list criteria.

Fail_Causes Describes a condition that resulted from the failure of a resource. You can
specify a list of up to four Fail_Causes identifiers separated by commas.
A Fail_Causes identifier displays a failure cause text message, SET F in
the message file. List the failure causes in the order of decreasing
probability. Leave this field blank if it is not applicable to the failure that
occurred. If you leave this field blank, either the User_Causes or the
Inst_Causes field must not be blank.

Fail_Actions
Describes recommended actions for correcting a failure that resulted from a
failure cause. You can specify a list of up to four recommended action
identifiers separated by commas. The Fail_Actions identifiers must
correspond to recommended action messages found in SET R of the
message file. Leave this field blank if the Fail_Causes field is blank. Refer
to the description of the User_Actions field for criteria in listing these
recommended actions.

Detail_Data Describes the detailed data that is logged with the error when the failure
occurs. The Detail_data field includes the name of the detecting module,
sense data, or return codes. Leave this field blank if no detailed data is
logged with the error.

You can repeat the Detail_Data field. The amount of data logged with an
error must not exceed the maximum error record length defined in the
sys/err_rec.h header file. Save failure data that cannot be contained in an
error log entry elsewhere, for example in a file. The detailed data in the
error log entry contains information that can be used to correlate the failure
data to the error log entry. Three values are required for each detail data
entry:

data_len Indicates the number of bytes of data to be associated with the
data_id value. The data_len value is interpreted as a decimal
value.

data_id Identifies a text message to be printed in the error report in front
of the detailed data. These identifiers refer to messages in SET
D of the message file.

data_encoding
Describes how the detailed data is to be printed in the error
report. Valid values for this field are:

ALPHA The detailed data is a printable ASCII character string.

DEC The detailed data is the binary representation of an
integer value, the decimal equivalent is to be printed.

HEX The detailed data is to be printed in hexadecimal.
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Sample Error Record Template
An example of an error record template is:

+ MISC_ERR:
Comment = ”Interrupt: I/O bus timeout or channel check”
Class = H
Log = TRUE
Report = TRUE
Alert = FALSE
Err_Type = UNKN
Err_Desc = E856
Prob_Causes = 3300, 6300
User_Causes =
User_Actions =
Inst_Causes =
Inst_Actions =
Fail_Causes = 3300, 6300
Fail_Actions = 0000
Detail_Data = 4, 8119, HEX *IOCC bus number
Detail_Data = 4, 811A, HEX *Bus Status Register
Detail_Data = 4, 811B, HEX *Misc. Interrupt Register

Construct the error templates for all new errors to be added in a file suitable for entry with
the errupdate command. Run the errupdate command with the –h flag and the input file.
The new errors are now part of the error record template repository. A new header file is
also created (file.h) in the same directory in which the errupdate command was run. This
header file must be included in the device driver code at compile time. Note that the
errupdate command has a built-in syntax checker for the new stanza that can be called with
the –c flag.

Adding Error Logging Calls into the Code
The third step in coding error logging is to put the error logging calls into the device driver
code. The errsave kernel service allows the kernel and kernel extensions to write to the
error log. Typically, you define a routine in the device driver that can be called by other
device driver routines when a loggable error is encountered. This function takes the data
passed to it, puts it into the proper structure and calls the errsave kernel service. The syntax
for the errsave kernel service is:

#include <sys/errids.h>

void errsave(buf, cnt)
char *buf;
unsigned int cnt;

where,

buf Specifies a pointer to a buffer that contains an error record as described in
the sys/errids.h header file.

cnt Specifies a number of bytes in the error record contained in the buffer
pointed to by the buf parameter.

The following sample code is an example of a device driver error logging routine. This
routine takes data passed to it from some part of the main body of the device driver. This
code simply fills in the structure with the pertinent information, then passes it on using the
errsave kernel service.
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void
errsv_ex (int err_id, unsigned int port_num,

int line, char *file, uint data1, uint data2)
{

dderr log;
char errbuf[255];
ddex_dds *p_dds;

p_dds = dds_dir[port_num];
log.err.error_id = err_id;

if (port_num = BAD_STATE) {
sprintf(log.err.resource_name, ”%s :%d”,
p_dds–>dds_vpd.adpt_name, data1);

data1 = 0;
}

else
sprintf(log.err.resource_name,”%s”,p_dds–>dds_vpd

.devname);

sprintf(errbuf, ”line: %d file: %s”, line, file);
strncpy(log.file, errbuf, (size_t)sizeof(log.file));

log.data1 = data1;
log.data2 = data2;

errsave(&log, (uint)sizeof(dderr));   /* run actual loggi
ng  */
}  /* end errlog_ex */

The data to be passed to the errsave kernel service is defined in the dderr structure which
is defined in a local header file, dderr.h. The definition for dderr is:

typedef struct dderr {
struct  err_rec0 err;
int  data1; /* use data1 and data2 to show detail  */
int  data2; /* data in the errlog report. Define   */

/* these fields in the errlog template */
/* These fields may not be used in all */
/* cases.                              */

} dderr;

The first field of the dderr.h header file is comprised of the err_rec0 structure, which is
defined in the sys/err_rec.h header file. This structure contains the ID (or label) and a field
for the resource name. The two data fields hold the detail data for the error log report. As an
alternative, you could simply list the fields within the function.

You can also log a message into the error log from the command line. To do this, use the
errlogger command.

After you add the templates using the errupdate command, compile the device driver code
along with the new header file. Simulate the error and verify that it was written to the error
log correctly. Some details to check for include:

• Is the error demon running? This can be verified by running the ps –ef command and
checking for /usr/lib/errdemon as part of the output.
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• Is the error part of the error template repository? Verify this by running the errpt  –at
command.

• Was the new header file, which was created by the errupdate command and which
contains the error label and unique error identification number, included in the device
driver code when it was compiled?

Writing to the /dev/error Special File
The error logging process begins when a loggable error is encountered and the device
driver error logging subroutine sends the error information to the errsave kernel service.
The error entry is written to the /dev/error special file. Once the information arrives at this
file, it is time-stamped by the errdemon daemon and put in a buffer. The errdemon daemon
constantly checks the /dev/error special file for new entries, and when new data is written,
the daemon collects other information pertaining to the resource reporting the error. The
errdemon daemon then creates an entry in the /var/adm/ras/errlog error logging file.
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Performance Tracing
The AIX trace facility is useful for observing a running device driver and system. The trace
facility captures a sequential flow of time-stamped system events, providing a fine level of
detail on system activity. Events are shown in time sequence and in the context of other
events. The trace facility is useful in expanding the trace event information to understand
who, when, how, and even why the event happened.

Introduction
The operating system is shipped with permanent trace event points. These events provide
general visibility to system execution. You can extend the visibility into applications by
inserting additional events and providing formatting rules.

Care was taken in the design and implementation of this facility to make the collection of
trace data efficient, so that system performance and flow would be minimally altered by
activating trace. Because of this, the facility is extremely useful as a performance analysis
tool and as a problem determination tool.

The trace facility is more flexible than traditional system monitor services that access and
present statistics maintained by the system. With traditional monitor services, data reduction
(conversion of system events to statistics) is largely coupled to the system instrumentation.
For example, the system can maintain the minimum, maximum, and average elapsed time
observed for runs of a task and permit this information to be extracted.

The trace facility does not strongly couple data reduction to instrumentation, but provides a
stream of system events. It is not required to presuppose what statistics are needed. The
statistics or data reduction are to a large degree separated from the instrumentation.

You can choose to develop the minimum, maximum, and average time for task A from the
flow of events. But it is also possible to extract the average time for task A when called by
process B, extract the average time for task A when conditions XYZ are met, develop a
standard deviation for task A, or even decide that some other task, recognized by a stream
of events, is more meaningful to summarize. This flexibility is invaluable for diagnosing
performance or functional problems.

The trace facility generates large volumes of data. This data cannot be captured for
extended periods of time without overflowing the storage device. This allows two practical
ways that the trace facility can be used natively.

First, the trace facility can be triggered in multiple ways to capture small increments of
system activity. It is practical to capture seconds to minutes of system activity in this way for
post-processing. This is sufficient time to characterize major application transactions or
interesting sections of a long task.

Second, the trace facility can be configured to direct the event stream to standard output.
This allows a realtime process to connect to the event stream and provide data reduction in
real-time, thereby creating a long term monitoring capability. A logical extension for
specialized instrumentation is to direct the data stream to an auxiliary device that can either
store massive amounts of data or provide dynamic data reduction.
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You can start the system trace from:

• The command line

• SMIT

• Software

As shown in the following Starting and Stopping Trace figure, the trace facility causes
predefined events to be written to a trace log. The tracing action is then stopped. Tracing
from a command line is discussed in “Controlling Trace”  on page 14-65. Tracing from a
software application is discussed and an example is presented in “Examples of Coding
Events and Formatting Events” on page 14-83.

Invoke trace from:
 – command line
 – SMIT
 – software

Defined trace
events are written
to the trace log.

trace
Command

Trace
Log

Stop
Trace

Starting and Stopping Trace

After a trace is started and stopped, you must format it before viewing it. This is illustrated in
the following Trace Formatting figure. To format the trace events that you have defined, you
must provide a stanza that describes how the trace formatter is to interpret the data that has
been collected. This is described in “Syntax for Stanzas in the trace Format File” on page
14-73.
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Invoke formatter
from:
 – command line
 – SMIT

Trcrpt filters the
trace log according
to entries in your
format file.

trcrpt
Command

Trace
Log

Formatted
Output File

Trace Formatting

The trcrpt command provides a general purpose report facility. The report facility provides
little data reduction, but converts the raw binary event stream to a readable ASCII listing of
the event stream. Data can be visually extracted by a reader, or tools can be developed to
further reduce the data.

For an event to be traced, you must write an event hook (sometimes called a trace hook)
into the code that you want to trace. Tracing can be done on either the system channel
(channel 0) or on a generic channel (channels 1–7). All preshipped trace points are output to
the system channel.

Usually, when you want to show interaction with other system routines, use the system
channel. The generic channels are provided so that you can control how much data is
written to the trace log. Only your data is written to one of the generic channels.

For more information on trace hooks, see “Macros for Recording trace Events” on page
14-71.

Using the trace Facility
The following sections describe the use of the trace facility.

Configuring and Starting trace Data Collection
The trace command configures the trace facility and starts data collection. The syntax of this
command is:

trace [ –a | –f | –l ] [ –c ] [ –d ] [ –h ] [ –j Event [ ,Event ] ] [ –k Event [ ,Event ] ]
[ –m Message ] [ –n ] [ –o OutName ] [ –o– ] [ –s ] [ –L Size ] [ –T Size ] [–1234567]

The various options of the trace command are:

–f or –l Control the capture of trace data in system memory. If you specify neither
the –f nor –l option, the trace facility creates two buffer areas in system
memory to capture the trace data. These buffers are alternately written to
the log file (or standard output if specified) as they become full. The –f or –l
flag provides you with the ability to prevent data from being written to the file
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during data collection. The options are to collect data only until the memory
buffer becomes full (–f for first), or to use the memory buffer as a circular
buffer that captures only the last set of events that occurred before trace
was terminated (–l). The –f and –l options are mutually exclusive. With
either the –f or –l option, data is not transferred from the memory collection
buffers to file until trace is terminated.

–a Run the trace collection asynchronously (as a background task), returning a
normal command line prompt. Without this option, the trace command runs
in a subcommand mode (similar to the crash command) and returns a >
prompt. You can issue subcommands and regular shell commands from the
trace subcommand mode by preceding the shell commands with an !
(exclamation point).

–c Saves the previous trace log file adding .old to its name. Generates an
error if a previous trace log file does not exists. When using the –o Name
flag, the user-defined trace log file is renamed.

–d Delay data collection. The trace facility is only configured. Data collection is
delayed until one of the collection trigger events occurs. Various methods
for triggering data collection on and off are provided. These include the
following:

• trace subcommands

• trace commands

• ioctls to /dev/systrctl.

–j events or –k events
Specify a set of events to include (–j) or exclude (–k) from the collection
process. Specify a list of events to include or exclude by a series of
three-digit hexadecimal event IDs separated by a space.

–s Terminate trace data collection if the trace log file reaches its maximum
specified size. The default without this option is to wrap and overwrite the
data in the log file on a FIFO basis.

–h Do not write a date/sysname/message header to the trace log file.

–m message Specify a text string (message) to be included in the trace log header
record. The message is included in reports generated by the trcrpt
command.

–n Adds some information to the trace log header: lock information, hardware
information, and, for each loader entry, the symbol name, address, and
type.

–o outfile Specify a file to use as the log file. If you do not use the –o option, the
default log file is /usr/adm/ras/trcfile. To direct the trace data to standard
output, code the –o option as –o –. (When –o– is specified the –c flag is
ignored.) Use this technique only to pipe the data stream to another process
since the trace data contains raw binary events that are not displayable.

–1234567 Duplicate the trace design for multiple channels. Channel 0 is the default
channel and is always used for recording system events. The other
channels are generic channels, and their use is not predefined. There are
various uses of generic channels in the system. The generic channels are
also available to user applications. Each created channel is a separate
events data stream. Events recorded to channel 0 are mixed with the
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predefined system events data stream. The other channels have no
predefined use and are assigned generically.

A program can request that a generic channel be opened by using the
trcstart subroutine. A channel number is returned, similar to the way a file
descriptor is returned when it opens a file. The program can record events
to this channel and, thus, have a private data stream. The trace command
allows a generic channel to be specifically configured by defining the
channel number with this option. However, this is not generally the way a
generic channel is started. It is more likely to be started from a program
using the trcstart subroutine, which uses the returned channel ID to record
events.

–T size and –L size
Specify the size of the collection memory buffers and the maximum size of
the log file in bytes. The trace facility pins the data collection buffers, making
this amount of memory unavailable to the rest of the system. It is important
to be aware of this, because it means that the trace facility can impact
performance in a memory constrained environment. If the application being
monitored is not memory constrained, or if the percentage of memory
consumed by the trace routine is small compared to what is available in the
system, the impact of trace “stolen” memory should be small.

If you do not specify a value, trace uses a default size. The trace facility pins
a little more than the specified buffer size. This additional memory is
required for the trace facility itself. Trace pins a little more than the amount
specified for first buffer mode (–f option). Trace pins a little more than twice
the amount specified for trace configured in alternate buffer or last (circular)
buffer mode.

You can also start trace from a the command line or with a trcstart subroutine call. The
trcstart subroutine is in the librts.a library. The syntax of the trcstart subroutine is:

int trcstart(char *args)

where args is simply the options list desired that you would enter using the trace command if
starting a system trace (channel 0). If starting a generic trace, include a –g option in the args
string. On successful completion, trcstart returns the channel ID. For generic tracing this
channel ID can be used to record to the private generic channel.

For an example of the trcstart routine, see the sample code on page 14-67.

When compiling a program using this subroutine, you must request the link to the librts.a
library. Use –l rts as a compile option.

Controlling trace
Once trace is configured by the trace command or the trcstart subroutine, controls to trace
trigger the collection of data on, trigger the collection of data off, and stop the trace facility
(stop deconfigures trace and unpins buffers). These basic controls exist as subcommands,
commands, subroutines, and ioctl controls to the trace control device, /dev/systrctl. These
controls are described in the following sections.

Controlling trace in Subcommand Mode
If the trace routine is configured without the –a option, it runs in subcommand mode.
Instead of the normal shell prompt, –> is the prompt. In this mode the following
subcommands are recognized:
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trcon Triggers collection of trace data on.

trcoff Triggers collection of trace data off.

q or quit Stops collection of trace data (like trcoff) and terminates trace
(deconfigures).

!command Runs the specified shell command.

The following is an example of a trace session in which the trace subcommands are used.
First, the system trace points have been displayed. Second, a trace on the system calls
have been selected. Of course, you can trace on more than one trace point. Be aware that
trace takes a lot of data. Only the first few lines are shown in the following example:

# trcrpt –j |pg
004 TRACEID IS ZERO
100 FLIH
200 RESUME
102 SLIH
103 RETURN FROM SLIH
101 SYSTEM CALL
104 RETURN FROM SYSTEM CALL
106 DISPATCH
10C DISPATCH IDLE PROCESS
11F SET ON READY QUEUE
134 EXEC SYSTEM CALL
139 FORK SYSTEM CALL
107 FILENAME TO VNODE (lookuppn)
15B OPEN SYSTEM CALL
130 CREAT SYSTEM CALL
19C WRITE SYSTEM CALL
163 READ SYSTEM CALL
10A KERN_PFS
10B LVM BUF STRUCT FLOW
116 XMALLOC size,align,heap
117 XMFREE address,heap
118 FORKCOPY
11E ISSIG
169 SBREAK SYSTEM CALL

# trace –d –j 101 –m ”system calls trace example” 
–> trcon
–> !cp /tmp/xbugs . 
–> trcoff
–> quit
# trcrpt –O ”exec=on,pid=on” > cp.trace 
# pg cp.trace
pr  3 11:02:02 1991
System: AIX smiller Node: 3
Machine: 000247903100
Internet Address: 00000000 0.0.0.0
system calls trace example
trace –d –j 101 –m –m system calls trace example

ID  PROCESS NAME PID  I ELAPSED_SEC  DELTA_MSEC APPL SYSCALL

001 trace       13939   0.000000000 0.000000     TRACE ON chan 0
101 trace       13939   0.000251392 0.251392     kwritev
101 trace       13939   0.000940800 0.689408     sigprocmask
101 trace       13939   0.001061888 0.121088     kreadv
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101 trace       13939   0.001501952 0.440064     kreadv
101 trace       13939   0.001919488 0.417536     kioctl
101 trace       13939   0.002395648 0.476160     kreadv
101 trace       13939   0.002705664 0.310016     kioctl

Controlling the trace Facility by Commands
If you configure the trace routine to run asynchronously (the –a option), you can control the
trace facility with the following commands:

trcon Triggers collection of trace data on.

trcoff Triggers collection of trace data off.

trcstop Stops collection of trace data (like trcoff) and terminates the trace routine.

Controlling the trace Facility by Subroutines
The controls for the trace routine are available as subroutines from the librts.a library. The
subroutines return zero on successful completion. The subroutines are:

trcon Triggers collection of trace data on.

trcoff Triggers collection of trace data off.

trcstop Stops collection of trace data (like trcoff) and terminates the trace routine.

Controlling the trace Facility with ioctls Calls
The subroutines for controlling trace open the trace control device (/dev/systrctl), issue the
appropriate ioctl command, close the control device and return. To control tracing around
sections of code, it can be more efficient for a program to issue the ioctl controls directly.
This avoids the unnecessary, repetitive opening and closing of the trace control device, at
the expense of exposing some of the implementation details of trace control. To use the
ioctl call in a program, include sys/trcctl.h to define the ioctl commands. The syntax of the
ioctl is as follows:

ioctl (fd, CMD, Channel)

where:

fd File descriptor returned from opening /dev/systrctl

CMD TRCON, TRCOFF, or TRCSTOP

Channel Trace channel (0 for system trace).

The following code sample shows how to start a trace from a program and only trace
around a specified section of code:

#include <sys/trcctl.h>
extern int trcstart(char *arg);
char *ctl_dev =”/dev/systrctl”;
int ctl_fd
main()
{

printf(”configuring trace collection \n”);
if (trcstart(”–ad”)){

perror(”trcstart”);
exit(1);

}
if((ctl_fd =open (ctl_dev))<0){

perror(”open ctl_dev”);
exit(1);

}
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printf(”turning trace collection on \n”);
if(ioctl(ctl_fd,TRCON,0)){

perror(”TRCON”);
exit(1);

}
/* code between here and trcoff ioctl will be traced */
printf(”turning trace off\n”);
if (ioctl(ctl_fd,TRCOFF,0)){

perror(”TRCOFF”);
exit(1);

}
exit(0);

}

Producing a trace Report
A trace report facility formats and displays the collected event stream in readable form. This
report facility displays text and data for each event according to rules provided in the trace
format file. The default trace format file is /etc/trcfmt and contains a stanza for each event
ID. The stanza for the event provides the report facility with formatting rules for that event.
This technique allows you to add your own events to programs and insert corresponding
event stanzas in the format file to have their new events formatted.

This report facility does not attempt to extract summary statistics (such as CPU utilization
and disk utilization) from the event stream. This can be done in several other ways. To
create simple summaries, consider using awk scripts to process the output obtained from
the trcrpt command.

The trcrpt Command
The syntax of the trcrpt command is as follows:

trcrpt [ –c ] [ –d List ] [ –e Date ] [ –h ] [ –j ] [ –k List ] [ –n Name ] [ –o File ] [ –p List ]
[ –q ] [ –r ] [ –s Date ] [ –t File ] [ –v ] [ –O Options] [ –T List ] [ LogFile ]

Normally the trcrpt output goes to standard output. However, it is generally more useful to
redirect the report output to a file. The options are:

–c Causes the trcrpt command to check the syntax of the trace format file.
The trace format file checked is either the default (/etc/trcfmt) or the file
specified by the –t flag with this command. You can check the syntax of the
new or modified format files with this option before attempting to use them.

–d List Allows you to specify a list of events to be included in the trcrpt output. This
is useful for eliminating information that is superfluous to a given analysis
and making the volume of data in the report more manageable. You may
have commonly used event profiles, which are lists of events that are useful
for a certain type of analysis.

–e Date Ends the report time with entries on, or before the specified date. The Date
parameter has the form mmddhhmmssyy (month, day, hour, minute,
second, and year). Date and time are recorded in the trace data only when
trace data collection is started and stopped. If you stop and restart trace
data collection multiple times during a trace session, date and time are
recorded each time you start or stop a trace data collection. Use this flag in
combination with the –s flag to limit the trace data to data collected during a
certain time interval.

–h Omit the column headings of the report.
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–j Causes the trcrpt command to produce a list of all the defined events from
the specified trace format file. This option is useful in creating an initial file
that you can edit to use as an include or exclude list for the trcrpt or trace
command.

–k List Similar to the –d flag, but allows you to specify a list of events to exclude
from the trcrpt output.

–n Name Specifies the kernel name list file to be used by trcrpt to convert kernel
addresses to routine names. If not specified, the report facility uses the
symbol table in /unix. A kernel name list file that matches the system the
data was collected on is necessary to produce an accurate trace report. You
can create such a file for a given level of system with the trcnm command:

trcnm /unix > Name

–o File Writes the report to a file instead of to standard output.

–p List Limits the trcrpt output to events that occurred during the running of
specific processes. List the processes by process name or process ID.

–q Suppresses detailed output of syntax error messages. This is not an option
you typically use.

–r Produces a raw binary format of the trace data. Each event is output as a
record in the order of occurrence. This is not necessarily the order in which
the events are in the trace log file since the logfile can wrap. If you use this
option, direct the output to a file (or process), since the binary form of the
data is not displayable.

–t File Allows you to specify a trace format file other than the default (/etc/trcfmt).

–T List Limits the report to the kernel thread IDs specified by the List parameter.
The list items are kernel thread IDs separated by commas. Starting the list
with a kernel thread ID limits the report to all kernel thread IDs in the list.
Starting the list with a ! (exclamation point) followed by a kernel thread ID
limits the report to all kernel thread IDs not in the list.

–O options Allows you to specify formatting options to the trcrpt command in a comma
separated list. Do not put spaces after the commas. These options take the
form of option=selection. If you do not specify a selection, the command
uses the default selection. The possible options are discussed in the
following sections. Each option is introduced by showing its default
selection.

2line=off This option lets the user specify whether the lines in the event
report are split and displayed across two lines. This is useful
when more columns of information have been requested than
can be displayed on the width of the output device.

endtime=nnn.nnnnnnnnn
The starttime and endtime option permit you to specify an
elapsed time interval in which the trcrpt produces output. The
elapsed time interval is specified in seconds with nanosecond
resolution.

exec=off Lets you specify whether a column showing the path name of
the current process is displayed. This is useful in showing
what process (by name) was active at the time of the event.
You typically want to specify this option. We recommend that
you specify exec=on and pid=on.
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ids=on Lets you specify whether to display a column that contains the
event IDs. If the selection is on, a three-digit hex ID is shown
for each event. The alternate is off.

pagesize=0 Lets you specify how often the column headings is reprinted.
The default selection of 0 displays the column headings
initially only. A selection of 10 displays the column heading
every 10 lines.

pid=off Lets you specify whether a column showing the process ID of
the current process is displayed. It is useful to have the
process ID displayed to distinguish between several
processes with the same executable name. We recommend
that you specify exec=on and pid=on.

starttime=nnn.nnnnnnnnn
The starttime and endtime option permit you to specify an
elapsed time interval in which the trcrpt command produces
output. The elapsed time interval is specified in seconds with
nanosecond resolution.

svc=off Lets you specify whether the report should contain a column
that indicates the active system call for those events that
occur while a system call is active.

tid=off Displays the kernel thread IDs in the trace report. Values
for this option are on and off. The default value is off.

timestamp=0
The report can contain two time columns. One column is
elapsed time since the trace command was initiated. The
other possible time column is the delta time between adjacent
events. The option controls if and how these times are
displayed. The selections are:

0 Provides both an elapsed time from the start of trace
and a delta time between events. The elapsed time is
shown in seconds and the delta time is shown in
milliseconds. Both fields show resolution to a
nanosecond. This is the default value.

1 Provides only an elapsed time column displayed as
seconds with resolution shown to microseconds.

2 Provides both an elapsed time and a delta time column.
The elapsed time is shown in seconds with nanosecond
resolution, and delta time is shown in microseconds with
microsecond resolution.

3 Omits all time stamps from the report.

logfile The logfile is the name of the file that contains the event data to be
processed by the trcrpt command. The default is the /usr/adm/ras/trcfile
file.

Defining trace Events
The operating system is shipped with predefined trace hooks (events). You need only
activate trace to capture the flow of events from the operating system. You may want to
define trace events in your code during development for tuning purposes. This provides
insight into how the program is interacting with the system. The following sections provide
the information that is required to do this.
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Possible Forms of a trace Event Record
A trace event can take several forms. An event consists of a

• Hookword
• Data words (optional)
• A TID, or thread identifier
• Timestamp (optional).

The following Format of a Trace Event Record figure illustrates a trace event. A four-bit type
is defined for each form the event record can take. The type field is imposed by the
recording routine so that the report facility can always skip from event to event when
processing the data, even if the formatting rules in the trace format file are incorrect or
missing for that event.

12 bit
Hook ID

4 bit
Type

16 bit
Data Field

D1 Optional Data Word 1

D2 Optional Data Word 2

D3 Optional Data Word 3

D4 Optional Data Word 4

D5 Optional Data Word 5

TID (Thread ID)

Optional Time Stamp

Format of a Trace Event Record

An event record should be as short as possible. Many system events use only the hookword
and timestamp. There is another event type you should seldom use because it is less
efficient. It is a long format that allows you to record a variable length of data. In this long
form, the 16-bit data field of the hookword is converted to a length field that describes the
length of the event record.

Macros for Recording trace Events
There is a macro to record each possible type of event record. The macros are defined in
the sys/trcmacros.h header file. The event IDs are defined in the sys/trchkid.h header file.
Include these two header files in any program that is recording trace events. The macros to
record system (channel 0) events with a time stamp are:

• TRCHKL0T (hw)
• TRCHKL1T (hw,D1)
• TRCHKL2T (hw,D1,D2)
• TRCHKL3T (hw,D1,D2,D3)
• TRCHKL4T (hw,D1,D2,D3)
• TRCHKL5T (hw,D1,D2,D3,D4,D5).
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Similarly, to record non-time stamped system events (channel 0), use the following macros:

• TRCHKL0 (hw)
• TRCHKL1 (hw,D1)
• TRCHKL2 (hw,D1,D2)
• TRCHKL3 (hw,D1,D2,D3)
• TRCHKL4 (hw,D1,D2,D3,D4)
• TRCHKL5 (hw,D1,D2,D3,D4,D5).

There are only two macros to record events to one of the generic channels (channels 1–7).
These are:

• TRCGEN (ch,hw,d1,len,buf)
• TRCGENT (ch,hw,d1,len,buf).

These macros record a hookword (hw), a data word (d1) and a length of data (len) specified
in bytes from the user’s data segment at the location specified (buf) to the event stream
specified by the channel (ch).

Use of Event IDs (hookids)
Event IDs are 12 bits (or 3-digit hexadecimal), for a possibility of 4096 IDs. Event IDs that
are permanently left in and shipped with code need to be permanently assigned by IBM.
Permanently assigned event IDs are defined in the sys/trchkid.h header file.

To allow you to define events in your environments or during development, a range of event
IDs exist for temporary use. The range of event IDs for temporary use is hex 010 through
hex 0FF. No permanent (shipped) events are assigned in this range. You can freely use this
range of IDs in your own environment. If you do use IDs in this range, do not let the code
leave your environment.

Permanent events must have event IDs assigned by the current owner of the trace
component. You should conserve event IDs because they are limited. Event IDs can be
extended by the data field. The only reason to have a unique ID is that an ID is the level at
which collection and report filtering is available in the trace facility. An ID can be collected or
not collected by the trace collection process and reported or not reported by the trace report
facility. Whole applications can be instrumented using only one event ID. The only restriction
is that the granularity on choosing visibility is to choose whether events for that application
are visible.

A new event can be formatted by the trace report facility (trcrpt command) if you create a
stanza for the event in the trace format file. The trace format file is an editable ASCII file.
The syntax for a format stanzas is shown in “Syntax for Stanzas in the trace Format File” on
page 14-73. All permanently assigned event IDs should have an appropriate stanza in the
default trace format file shipped with the base operating system.

Suggested Locations and Data for Permanent Events
The intent of permanent events is to give an adequate level of visibility to determine
execution, and data flow, and have an adequate accounting for how CPU time is being
consumed. During code development, it can be desirable to make very detailed use of trace
for a component. For example, you can choose to trace the entry and exit of every
subroutine in order to understand and tune pathlength. However, this would generally be an
excessive level of instrumentation to ship for a component.

We suggest that you consult a performance analyst for decisions regarding what events and
data to capture as permanent events for a new component. The following paragraphs
provide some guidelines for these decisions.

Events should capture execution flow and data flow between major components or major
sections of a component. For example, there are existing events that capture the interface
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between the virtual memory manager and the logical volume manager. If work is being
queued, data that identifies the queued item (a handle) should be recorded with the event.
When a queue element is being processed, the “dequeue” event should provide this
identifier as data also, so that the queue element being serviced is identified.

Data or requests that are identified by different handles at different levels of the system
should have events and data that allow them to be uniquely identified at any level. For
example, a read request to the physical file system is identified by a file descriptor and a
current offset in the file. To a virtual memory manager, the same request is identified by a
segment ID and a virtual page address. At the disk device driver level, this request is
identified as a pointer to a structure which contains pertinent data for the request.

The file descriptor or segment information is not available at the device driver level. Events
must provide the necessary data to link these identifiers so that, for example, when a disk
interrupt occurs for incoming data, the identifier at that level (which can simply be the buffer
address for where the data is to be copied) can be linked to the original user request for
data at some offset into a file.

Events should provide visibility to major protocol events such as requests, responses,
acknowledgements, errors, and retries. If a request at some level is fragmented into multiple
requests, a trace event should indicate this and supply linkage data to allow the multiple
requests to be tracked from that point. If multiple requests at some level are coalesced into
a single request, a trace event should also indicate this and provide appropriate data to
track the new request.

Use events to give visibility to resource consumption. Whenever resources are claimed,
returned, created or deleted an event should record the fact. For example, claiming or
returning buffers to a buffer pool or growing or shrinking the number of buffers in the pool.

The following guidelines can help you determine where and when you should have trace
hooks in your code:

• Tracing entry and exit points of every function is not necessary. Provide only key actions
and data

• Show linkage between major code blocks or processes

• If work is queued, associate a name (handle) with it and output it as data

• If a queue is being serviced, the trace event should indicate the unique element being
serviced

• If a work request or response is being referenced by different handles as it passes
through different software components, trace the transactions so the action or receipt can
be identified

• Place trace hooks so that requests, responses, errors, and retries can be observed

• Identify when resources are claimed, returned, created, or destroyed.

Also note that:

• A trace ID can be used for a group of events by “switching” on one of the data fields. This
means that a particular data field can be used to identify from where the trace point was
called. The trace format routine can be made to format the trace data for that unique trace
point.

• The trace hook is the level at which a group of events can be enabled or disabled.

Syntax for Stanzas in the trace Format File
The intent of the trace format file is to provide rules for presentation and display of the
expected data for each event ID. This allows new events to be formatted without changing
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the report facility. Rules for new events are simply added to the format file. The syntax of the
rules provide flexibility in the presentation of the data.

Refer to the /etc/tcrfmt file to see examples of the syntax for stanzas that appear in the
trace format file.

event_id V.R  L = event_label

one of

APPL
SVC
KERN
INT

Syntax of a Stanza in the Format File

/n
/t
starttimer(#,#)
endtimer(#,#)
data_descriptor

A trace format stanza can be as long as required to describe the rules for any particular
event. The stanza can be continued to the next line by terminating the present line with a \
(backslash) character. The fields are:

event_id Each stanza begins with the three-digit hexadecimal event ID that the
stanza describes, followed by a space.

V.R This field describes the version (V) and release (R) that the event was first
assigned. Any integers work for V and R, and you may want to keep your
own tracking mechanism.

L= The text description of an event can begin at various indentation levels. This
improves the readability of the report output. The indentation levels
correspond to the level at which the system is running. The recognized
levels are:

APPL Application level

SVC Transitioning system call

KERN Kernel level

INT Interrupt

event_label The event_label is an ASCII text string that describes the overall use of the
event ID. This is used by the –j option of the trcrpt command to provide a
listing of events and their first level description. The event label also
appears in the formatted output for the event unless the event_label field
starts with an @ character.

\n The event stanza describes how to parse, label and present the data
contained in an event record. You can insert a \n (newline) in the event
stanza to continue data presentation of the data on a new line. This allows
the presentation of the data for an event to be several lines long.

\t The \t (tab) function inserts a tab at the point it is encountered in parsing the
description. This is similar to the way the \n function inserts new lines.
Spacing can also be inserted by spaces in the data_label or
match_label fields.

starttimer(#,#)
The starttimer and endtimer fields work together. The (#,#) field is a
unique identifier that associates a particular starttimer value with an
endtimer that has the same identifier. By convention, if possible, the
identifiers should be the ID of starting event and the ID of the ending event.
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When the report facility encounters a start timer directive while parsing an
event, it associates the starting events time with the unique identifier. When
an end timer with the same identifier is encountered, the report facility
outputs the delta time (this appears in brackets) that elapsed between the
starting event and ending event. The begin and end system call events
make use of this capability. On the return from system call event, a delta
time is shown that indicates how long the system call took.

endtimer(#,#) See the starttimmer field in the preceding paragraph.

data_descriptor
The data_descriptor field is the fundamental field that describes how
the report facility consumes, labels, and presents the data. The following
Syntax of the data_descriptor Field figure illustrates this field’s syntax.

data_label

, match_val

format

match_label
data_descriptor

data_descriptor

Syntax of the data_descriptor Field

The various subfields of the data_descriptor field are:

data_label The data label is an ASCII string that can optionally precede the output of
data consumed by the following format field.

format Review the format of an event record depicted in the figure Format of a
trace Event Record. You can think of the report facility as having a pointer
into the data portion of an event. This data pointer is initialized to point to
the beginning of the event data (the 16-bit data field in the hookword). The
format field describes how much data the report facility consumes from
this point and how the data is considered. For example, a value of Bm.n
tells the report facility to consume m bytes and n bits of data and to
consider it as binary data.

The possible format fields are described in the following
section. If this field is not followed by a comma, the report
facility outputs the consumed data in the format specified. If
this field is followed by a comma, it signifies that the data is
not to be displayed but instead compared against the
following match_vals field. The data descriptor associated
with the matching match_val field is then applied to the
remainder of the data.

match_val The match value is data of the same format described by the preceding
format fields. Several match values typically follow a format field that is
being matched. The successive match fields are separated by commas.
The last match value is not followed by a comma. Use the character string
\* as a pattern-matching character to match anything. A pattern-matching
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character is frequently used as the last element of the match_val field to
specify default rules if the preceding match_val field did not occur.

match_label The match label is an ASCII string that is output for the corresponding
match.

Each of the possible format fields is described in the comments of the /etc/trcfmt file. The
following shows several possibilities:

Format field descriptions

Am.n This value specifies that m bytes of data are consumed as ASCII text, and
that it is displayed in an output field that is n characters wide. The data
pointer is moved m bytes.

S1, S2, S4 Left justified string. The length of the field is defined as 1 byte (S1), 2 bytes
(S2), or 4 bytes (S4). The data pointer is moved accordingly.

Bm.n Binary data of m bytes and n bits. The data pointer is moved accordingly.

Xm Hexadecimal data of m bytes. The data pointer is moved accordingly.

D2, D4 Signed decimal format. Data length of 2 (D2) bytes or 4 (D4) bytes is
consumed.

U2, U4 Unsigned decimal format. Data length of 2 or 4 bytes is consumed.

F4, F8 Floating point of 4 or 8 bytes.

Gm.n Positions the data pointer. It specifies that the data pointer is positioned m
bytes and n bits into the data.

Om.n Skip or omit data. It omits m bytes and n bits.

Rm Reverse the data pointer m bytes.

Some macros are provided that can be used as format fields to quickly access data. For
example:

$D1, $D2, $D3, $D4, $D5
These macros access data words 1 through 5 of the event record without
moving the data pointer. The data accessed by a macro is hexadecimal by
default. A macro can be cast to a different data type (X, D, U, B) by using a
% character followed by the new format code. For example:

$D1%B2.3

This macro causes data word one to be accessed, but to be considered as
2 bytes and 3 bits of binary data.

$HD This macro accesses the first 16 bits of data contained in the hookword, in a
similar manner as the $D1 through $D5 macros access the various data
words. It is also considered as hexadecimal data, and also can be cast.

You can define other macros and use other formatting techniques in the trace format file.
This is shown in the following trace format file example.
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Example Trace Format File
# Licensed Materials – Property of IBM
#
# US Government Users Restricted Rights – Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 
# I. General Information
#
# A. Binary format for the tracehook calls. (1 column = 4 bits)
# trchk MMmTDDDD
# trchkt MMmTDDDDtttttttt
# trchkl MMmTDDDD11111111
# trchklt MMmTDDDD11111111tttttttt
# trchkg MMmTDDDD1111111122222222333333334444444455555555
# trchkg MMmTDDDD1111111122222222333333334444444455555555tttttttt
# trcgen MMmTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxx
# trcgent MMmTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxxtttttttt
#
# legend:
# MM = major id
# m  = minor id
# T  = hooktype
# D  = hookdata
# t  = nanosecond timestamp
# 1  = d1 (see trchkid.h for calling syntax for the tracehook routines)
# 2  = d2, etc.
# v  = trcgen variable length buffer
# L  = length of variable length data in bytes.
#
#  The DATA_POINTER starts at the third byte in the event, ie.,
#    at the 16 bit hookdata DDDD.
#  The trcgen() type (6,7) is an exception.The DATA_POINTER starts at
#    the fifth byte, ie., at the ’d1’ parameter 11111111.
#
# B. Indentation levels
# the left margin is set per template using the ’L=XXXX’ command.
#    The default is L=KERN, the second column.
#    L=APPL moves the left margin to the first  column.
#    L=SVC  moves the left margin to the second column.
#    L=KERN moves the left margin to the third  column.
#    L=INT  moves the left margin to the fourth column.
#    The command if used must go just after the version code.
#
#    Example usage:
#113 1.7 L=INT ”stray interrupt” ... \
#
# C. Continuation code and delimiters.
#    A ’\’ at the end of the line must be used to continue the template
#     on the next line.
#    Individual strings (labels) can be separated by one or more blanks
#     or tabs. However, all whitespace is squeezed down to 1 blank on
#     the report. Use ’\t’ for skipping to the next tabstop, or use
#     A0.X format (see below) for variable space.
#
#
# II. FORMAT codes
#
# A. Codes that manipulate the DATA_PONTER
# Gm.n
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#     ”Goto”    Set DATA_POINTER to byte.bit location m.n
#
# Om.n
#     ”Omit”    Advance DATA_POINTER by m.n byte.bits
#
# Rm
#     ”Reverse” Decrement DATA_POINTER by m bytes. R0 byte aligns.
#
# B. Codes that cause data to be output.
# Am.n
#     Left justified ascii.
#     m=length in bytes of the binary data.
#     n=width of the displayed field.
#     The data pointer is rounded up to the next byte boundary.
#     Example
#      DATA_POINTER|
#                  V
#             xxxxxhello world\0xxxxxx
#
#  i.   A8.16 results in:                       |hello wo        |
#       DATA_POINTER––––––––|
#                           V
#              xxxxxhello world\0xxxxxx
#
#  ii.  A16.16 results in:                      |hello world     |
#       DATA_POINTER––––––––––––––––|
#                                   V
#              xxxxxhello world\0xxxxxx
#
#  iii. A16 results in:                         |hello world|
#       DATA_POINTER––––––––––––––––|
#                                   V
#              xxxxxhello world\0xxxxxx
#
#  iv.  A0.16 results in:                       |                |
#       DATA_POINTER|
#                   V
#              xxxxxhello world\0xxxxxx
#
# S1, S2, S4
# Left justified ascii string.
# The length of the string is in the first byte(half–word, word)
# of the data. This length of the string does not include this byte.
#  The data pointer is advanced by the length value.
#     Example
#      DATA_POINTER|
#                  V
#             xxxxxBhello worldxxxxxx     (B = hex 0x0b)
#
#  i.   S1 results in:                          |hello world|
#       DATA_POINTER–––––––––––|
#                              V
#              xxxxBhello worldxxxxxx
#
# $reg%S1
#     A register with the format code of ’Sx’ works ”backwards”
#     from a register with a different type. The format is Sx,
#     but the length of the string comes from $reg instead of the
#     next n bytes.
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#
# Bm.n
#     Binary format.
#     m = length in bytes
#     n = length in bits
#     The length in bits of the data is m * 8 + n. B2.3 and B0.19
#     are the same. Unlike the other printing FORMAT codes, the
#     DATA_POINTER can be bit aligned and is not rounded up to
#     the next byte boundary.
#
# Xm
#     Hex format.
#     m = length in bytes. m=0 thru 16
#     The DATA_POINTER is advanced by m.
#
# D2, D4
#     Signed decimal format.
#     The length of the data is 2 (4) bytes.
#     The DATA_POINTER is advanced by 2 (4).
#
# U2, U4
#     Unsigned decimal format.
#     The length of the data is 2 (4) bytes.
#     The DATA_POINTER is advanced by 2 (4).
#
# F4
#     Floating point format. (like %0.4E)
#     The length of the data is 4 bytes.
#     The format of the data is that of C type ’float’.
#     The DATA_POINTER is advanced by 4.
#
# F8
#     Floating point format. (like %0.4E)
#     The length of the data is 8 bytes.
#     The format of the data is that of C type ’double’.
#     The DATA_POINTER is advanced by 8.
#
# HB
#     Number of bytes in trcgen() variable length buffer.
#     This is also equal to the 16 bit hookdata.
#     The DATA_POINTER is not changed.
#
# HT
#  The hooktype. (0 – E)
#  trcgen  = 0, trchk  = 1, trchl  = 2, trchkg  = 6
#  trcgent = 8, trchkt = 9, trchlt = A, trchkgt = E
#  HT & 0x07 masks off the timestamp bit
#  This is used for allowing multiple, different trchkx() calls with
#       the same template.
#     The DATA_POINTER is not changed.
#
# C. Codes that interpret the data in some way before output.
# T4
#     Output the next 4 bytes as a data and time string,
#     in GMT timezone format.  (as in ctime(&seconds))
#     The DATA_POINTER is advanced by 4.
#
# E1,E2,E4
#     Output the next byte (half_word, word) as an ’errno’ value, 
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#     replacing the numeric code with the corresponding #define name in
#     /usr/include/sys/errno.h
#     The DATA_POINTER is advanced by 1, 2, or 4.
#
# P4
#  Use the next word as a process id (pid), and output the 
#  pathname of the executable with that process id.Process
#  ids and their pathnames are acquired by the trace command at 
#  the start of a trace and by trcrpt via a special EXEC tracehook.
#  The DATA_POINTER is advanced by 4.
#
# \t
#  Output a tab. \t\t\t outputs 3 tabs. Tabs are expanded to spaces,
#  using a fixed tabstop separation of 8.If L=0 indentation is used,
#     the first tabstop is at 3.
#     The DATA_POINTER advances over the \t.
#
# \n
#  Output a newline. \n\n\n outputs 3 newlines.
#  The newline is left–justified according to the INDENTATION LEVEL.
#     The DATA_POINTER advances over the \n.
#
# $macro
#     The value of ’macro’ is output as a %04X value. Undefined
#     macros have the value of 0000.
#     The DATA_POINTER is not changed.
#     An optional format can be used with macros:
#        $v1%X4    will output the value $v1 in X4 format.
#        $zz%B0.8  will output the value $v1 in 8 bits of binary.
#     Understood formats are: X, D, U, B. Others default to X2.
#
# ”string”     ’string’ data type
#  Output the characters inside the double quotes exactly. A string
#     is treated as a descriptor. Use ”” as a NULL string.
#
# ‘string format $macro‘ If a string is backquoted, it is expanded
#   as a quoted string, except that FORMAT codes and $registers are
#     expanded as registers.
#
# III. SWITCH statement
#     A format code followed by a comma is a SWITCH statement.
#     Each CASE entry of the SWITCH statement consists of
#       1. a ’matchvalue’ with a type (usually numeric) corresponding
#          to the format code.
#       2. a simple ’string’ or a new ’descriptor’ bounded by braces.
#          A descriptor is a sequence of format codes, strings,
#          switches and loops.
#       3. and a comma delimiter.
#  The switch is terminated by a CASE entry without a comma 
#  delimiter.   The CASE entry is selected to as the first 
#  entry whose matchvalue   is equal to the expansion of the format
#  code. The special matchvalue ’\*’ is a wildcard and matches
#  anything.
#  The DATA_POINTER is advanced by the format code.
#
#
# IV. LOOP statement
#     The syntax of a ’loop’ is
#     LOOP format_code { descriptor }
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#     The descriptor is executed N times, where N is the numeric value
#     of the format code.The DATA_POINTER is advanced by the 
#     format code plus whatever the descriptor does. Loops are used to
#     output binary buffers of data, so descriptor is
#     usually simply X1 or X0. Note that X0 is like X1 but does not
#     supply a space separator ’ ’ between each byte.
#
# V. macro assignment and expressions
#  ’macros’ are temporary (for the duration of that event) variables
#   that work like shell variables.
#   They are assigned a value with the syntax:
#   {{ $xxx = EXPR }}
#   where EXPR is a combination of format codes, macros, and constants.
#   Allowed operators are + – / *
#   For example:
#{{ $dog = 7 + 6 }} {{ $cat = $dog * 2 }} $dog $cat
#
#   will output:
#000D 001A
#
#   Macros are useful in loops where the loop count is not always
#   just before the data:
#G1.5 {{ $count = B0.5 }} G11 LOOP $count {X0}
#
#   Up to 25 macros can be defined per template.
#
#
# VI. Special macros:
# $RELLINENO line number for this event. The first line starts at 1.
# $D1 – $D5 dataword 1 through dataword 5. No change to datapointer.
# $HD hookdata (lower 16 bits)
# $SVC Output the name of the current SVC
# $EXECPATH Output the pathname of the executable for current process.
# $PID Output the current process id.
# $ERROR Output an error message to the report and exit from the 

template after the current descriptor is processed.
# The error message supplies the logfile, logfile offset of 
# the start of that event, and the traceid.
# $LOGIDX Current logfile offset into this event.
# $LOGIDX0 Like $LOGIDX, but is the start of the event.
# $LOGFILE Name of the logfile being processed.
# $TRACEID Traceid of this event.
# $DEFAULT Use the DEFAULT template 008
# $STOP   End the trace report right away
# $BREAK   End the current trace event
# $SKIP    Like break, but don’t print anything out.
# $DATAPOINTER  The DATA_POINTER. It can be set and manipulated
#          like other user–macros.
#            {{ $DATAPOINTER = 5 }} is equivalent to G5
# $BASEPOINTER Usually 0. It is the starting offset into an event.The
# actual offset is the DATA_POINTER + BASE_POINTER. It is used
# with template subroutines, where the parts on an event have
# the same structure, and can be printed by the same template,
# but may have different starting points into an event.
#
# VII. Template subroutines
# If a macro name consists of 3 hex digits, it is a ”template 
# subroutine”. The template whose traceid equals the macro name
#  is inserted in place of the macro.
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#
# The data pointer is where is was when the template
# substitution was encountered.Any change made to the data pointer
# by the template subroutine remains in affect when the template 
# ends.
#
# Macros used within the template subroutine correspond to those 
# in the calling template. The first definition of a macro in the
# called template is the same variable as the first in the called.
# The names are not related.
#
# Example:
# Output the trace label ESDI STRATEGY.
# The macro ’$stat’ is set to bytes 2 and 3 of the trace event.
# Then call template 90F to interpret a buf header. The macro 
# ’$return’ corresponds to the macro ’$rv’, since they were
# declared in the same order. A macro definition with
#  no ’=’ assignment just declares the name
# like a place holder. When the template returns,the saved special
# status word is output and the returned minor device number.
#
#900 1.0 ”ESDI STRATEGY” {{ $rv = 0 }} {{ $stat = X2 }} \
#    $90F \n\
#special_esdi_status=$stat for minor device $rv
#
#90F 1.0 ”” G4 {{ $return }} \
#    block number X4 \n\
#    byte count   X4 \n\
#    B0.1, 1 B_FLAG0 \
#    B0.1, 1 B_FLAG1 \
#    B0.1, 1 B_FLAG2 \
#    G16 {{ $return = X2 }}
#
# Note: The $DEFAULT reserved macro is the same as $008
#
# VII. BITFLAGS statement
#  The syntax of a ’bitflags’ is
#  BITFLAGS [format_code|register],
#  flag_value string {optional string if false},   or
#  ’&’ mask field_value string,
#  ...
#
#  This statement simplifies expanding state flags, since it look
#    a lot like a series of #defines.
#  The ’&’ mask is used for interpreting bit fields.
#  The mask is anded to the register and the result is compared to
#    the field_value. If a match, the string is printed.
# The base is 16 for flag_values and masks.
# The DATA_POINTER is advanced if a format code is used.
# Note:the default base for BITFLAGS is 16. If the mask or field
# value has a leading 0, the number is octal. 0x or 0X makes the 
# number hex.
# A 000 traceid will use this template
# This id is also used to define most of the template functions.
#  filemode(omode) expand omode the way  ls –l does. The
#                  call to setdelim() inhibits spaces between the chars.
#
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Examples of Coding Events and Formatting Events
There are five basic steps involved in generating a trace from your software program.

Step 1: Enable the trace
Enable and disable the trace from your software that has the trace hooks defined. The
following code shows the use of trace events to time the running of a program loop.

#include <sys/trcctl.h>
#include <sys/trcmacros.h>
#include <sys/trchkid.h>

char *ctl_file = ”/dev/systrctl”;
int ctlfd;
int i;

main()
{

printf(”configuring trace collection \n”);
if (trcstart(”–ad”)){

perror(”trcstart”);
exit(1);

}
if((ctlfd = open(ctl_file,0))<0){

perror(ctl_file);
exit(1);

}
printf(”turning  trace on \n”);
if(ioctl(ctlfd,TRCON,0)){

perror(”TRCON”);
exit(1);

}
/* here is the code that is being traced */
for(i=1;i<11;i++){

TRCHKL1T(HKWD_USER1,i);
/*   sleep(1) */
/* you can uncomment sleep to make the loop
/* take longer. If you do, you will want to
/* filter the output or you will be */
/* overwhelmed with 11 seconds of data */

}
/* stop tracing code */
printf(”turning trace off\n”);
if(ioctl(ctlfd,TRCSTOP,0)){

perror(”TRCOFF”);
exit(1);

}
exit(0);

}

Step 2: Compile your program
When you compile the sample program, you need to link to the librts.a library:

cc –o sample sample.c –l rts
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Step 3: Run the program
Run the program. In this case, it can be done with the following command:

./sample

You must have root privilege if you use the default file to collect the trace information
(/usr/adm/ras/trcfile).

Step 4: Add a stanza to the format file
This provides the report generator with the information to correctly format your file. The
report facility does not know how to format the HKWD_USER1 event, unless you provide
rules in the trace format file.

The following is an example of a stanza for the HKWD_USER1 event. The HKWD_USER1
event is event ID 010 hexadecimal. You can verify this by looking at the sys/trchkid.h
header file.

# User event HKWD_USER1 Formatting Rules Stanza
# An example that will format the event usage of the sample program
010 1.0 L=APPL ”USER EVENT – HKWD_USER1” O2.0 \n\
               ”The # of loop iterations =” U4\n\
               ”The elapsed time of the last loop = ”\
                endtimer(0x010,0x010) starttimer(0x010,0x010)

Note: When entering the example stanza, do not modify the master format file /etc/trcfmt.
Instead, make a copy and keep it in your own directory. This allows you to always
have the original trace format file available.

Step 5: Run the format/filter program
Filter the output report to get only your events. To do this, run the trcrpt command:

trcrpt –d 010 –t mytrcfmt –O exec=on –o sample.rpt

The formatted trace results are:

ID PROC NAME  I  ELAPSED_SEC  DELTA_MSEC   APPL SYSCALL    KERNEL  INTERRUPT

010 sample     0.000105984  0.105984 USER HOOK 1
The data field for the user hook = 1

010 sample     0.000113920  0.007936 USER HOOK 1
The data field for the user hook = 2 [7 usec]

010 sample     0.000119296  0.005376 USER HOOK 1
The data field for the user hook = 3 [5 usec]

010 sample     0.000124672  0.005376 USER HOOK 1
The data field for the user hook = 4 [5 usec]

010 sample     0.000129792  0.005120 USER HOOK 1
The data field for the user hook = 5 [5 usec]

010 sample     0.000135168  0.005376 USER HOOK 1
The data field for the user hook = 6 [5 usec]

010 sample     0.000140288  0.005120 USER HOOK 1
The data field for the user hook = 7 [5 usec]

010 sample     0.000145408  0.005120 USER HOOK 1
The data field for the user hook = 8 [5 usec]

010 sample     0.000151040  0.005632 USER HOOK 1
The data field for the user hook = 9 [5 usec]

010 sample     0.000156160  0.005120 USER HOOK 1
The data field for the user hook = 10 [5 usec]
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Usage Hints
The following sections provide some examples and suggestions for use of the trace facility.

Viewing trace Data
Include several optional columns of data in the trace output. This causes the output to
exceed 80 columns. It is best to view the reports on an output device that supports 132
columns.

Bracketing Data Collection
Trace data accumulates rapidly. Bracket the data collection as closely around the area of
interest as possible. One technique for doing this is to issue several commands on the same
command line. For example, the command:

trace –a; cp /etc/trcfmt /tmp/junk; trcstop

captures the total execution of the copy command.

Note: This example is more educational if the source file is not already cached in system
memory. The trcfmt file can be in memory if you have been modifying it or producing
trace reports. In that case, choose as the source file some other file that is 50 to
100KB and has not been touched.

Reading a trace Report
The trace facility displays system activity. It is a useful learning tool to observe how the
system actually performs. The previous output is an interesting example to browse. To
produce a report of the copy, use the following:

trcrpt –O ”exec=on,pid=on” > cp.rpt

In the cp.rpt file you can see the following activities:

• The fork, exec, and page fault activities of the cp process

• The opening of the /etc/trcfmt file for reading and the creation of the /tmp/junk file

• The successive read and write subroutiness to accomplish the copy

• The cp process becoming blocked while waiting for I/O completion, and the wait process
being dispatched

• How logical volume requests are translated to physical volume requests

• The files are mapped rather than buffered in traditional kernel buffers. The read accesses
cause page faults that must be resolved by the virtual memory manager

• The virtual memory manager senses sequential access and begins to prefetch the file
pages

• The size of the prefetch becomes larger as sequential access continues

• The writes are delayed until the file is closed (unless you captured execution of the sync
daemon that periodically forces out modified pages)

• The disk device driver coalesces multiple file requests into one I/O request to the drive
when possible.

The trace output looks a little overwhelming at first. This is a good example to use as a
learning aid. If you can discern the activities described, you are well on your way to being
able to use the trace facility to diagnose system performance problems.
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Effective Filtering of the trace Report
The full detail of the trace data may not be required. You can choose specific events of
interest to be shown. For example, it is sometimes useful to find the number of times a
certain event occurred. Answer the question, “how many opens occurred in the copy
example?” First, find the event ID for the open subroutine:

trcrpt –j | pg

You can see that event ID 15b is the open event. Now, process the data from the copy
example (the data is probably still in the log file) as follows:

trcrpt –d 15b –O ”exec=on”

The report is written to standard output and you can determine the number of opens that
occurred. If you want to see only the opens that were performed by the cp process, run the
report command again using:

trcrpt –d 15b –p cp –O ”exec=on”

This command shows only the opens performed by the cp process.
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Appendix A. New Interfaces

This appendix contains descriptions of the following new services that can be used by
device driver writers but are not documented elsewhere:

• d_map_clear kernel service

• d_map_disable kernel service

• d_map_enable kernel service

• d_map_init kernel service

• d_map_list kernel service

• d_map_page kernel service

• d_map_slave kernel service

• d_unmap_list kernel service

• d_unmap_page kernel service

• d_unmap_slave kernel service

• iomem_att kernel service

• iomem_det kernel service

• ns_alloc network service

• ns_free network service

• rmalloc kernel service

• rmfree kernel service
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d_map_clear Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_init call.

Syntax
#include <sys/dma.h>

void d_map_clear (*handle)
struct d_handle *handle

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.

Description
The d_map_clear kernel service is a bus specific utility routine determined by the
d_map_init service that deallocates resources previously allocated on a d_map_init call.
This includes freeing the d_handle structure that was allocated by d_map_init.

Note: You can use the D_MAP_CLEAR macro provided in the /usr/include/sys/dma.h file
to code calls to the d_map_clear kernel service.

Implementation Specifics
The d_map_clear kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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d_map_disable Kernel Service

Purpose
Disables DMA for the specified handle.

Syntax
#include <sys/dma.h>>

int d_map_disable(*handle)
struct d_handle *handle;

Parameters
handle Indicates the unique handle returned by d_map_init.

Description
The d_map_disable kernel service is a bus specific utility routine determined by the
d_map_init kernel service that disables DMA for the specified handle with respect to the
platform.

Note: You can use the D_MAP_DISABLE macro provided in the /usr/include/sys/dma.h
file to code calls to the d_map_disable kernel service.

Return Values
DMA_SUCC Indicates the DMA is successfully disabled

DMA_FAIL Indicates the DMA could not be explicitly disabled for this device or bus.

Implementation Specifics
The d_map_disable kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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d_map_enable Kernel Service

Purpose
Enables DMA for the specified handle.

Syntax
#include <sys/dma.h>>

int d_map_enable(*handle)
struct d_handle *handle;

Parameters
handle Indicates the unique handle returned by d_map_init.

Description
The d_map_enable kernel service is a bus specific utility routine determined by the
d_map_init kernel service that enables DMA for the specified handle with respect to the
platform.

Note: You can use the D_MAP_ENABLE macro provided in the /usr/include/sys/dma.h
file to code calls to the d_map_enable kernel service.

Return Values
DMA_SUCC Indicates the DMA is successfully enabled

DMA_FAIL Indicates the DMA could not be explicitly enabled for this device or bus.

Implementation Specifics
The d_map_enable kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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d_map_init Kernel Service

Purpose
Allocates and initializes resources for performing DMA with PCI and ISA devices.

Syntax
#include <sys/dma.h>

struct d_handle* d_map_init (bid, flags, bus_flags, channel)
int bid;
int flags;
int bus_flags;
uint channel;

Parameters
bid Specifies the bus identifier.

flags Describes the mapping.

bus_flags Specifies the target bus flags.

channel Indicates the channel assignment specific to the bus.

Description
The d_map_init kernel service allocates and initializes resources needed for managing
DMA operations and returns a unique handle to be used on subsequent DMA service calls.
The handle is a pointer to a d_handle structure allocated by d_map_init from the pinned
heap for the device. The device driver uses the function addresses provided in the handle
for accessing the DMA services specific to its host bus. The d_map_init service returns a
DMA_FAIL error when resources are unavailable or cannot be allocated.

The channel parameter is the assigned channel number for the device, if any. Some devices
and or buses might not have the concept of channels. For example, an ISA device driver
would pass in its assigned DMA channel in the channel parameter.

Execution Environment
The d_map_init kernel service should only be called from the process environment.

Return Values
DMA_FAIL Indicates that the resources are unavailable. No registration was completed.

struct d_handle *
Indicates successful completion.

Implementation Specifics
The d_map_init kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The d_map_clear kernel service, d_map_page kernel service, d_unmap_page kernel
service, d_map_list kernel service, d_unmap_list kernel service, d_map_slave kernel
service, d_unmap_slave kernel service, d_map_disable kernel service, d_map_enable
kernel service.
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d_map_list Kernel Service

Purpose
Performs platform-specific DMA mapping for a list of virtual addresses.

Syntax
#include <sys/dma.h>

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)
struct d_handle *handle;
int flags;
int minxfer;
int *virt_list;
int *bus_list;

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.

flags Specifies one of the following flags:

DMA_READ Transfers from a device to memory.

BUS_DMA Transfers from one device to another device.

DMA_BYPASS Do not check page access.

minxfer Specifies the minimum transfer size for the device.

virt_list Specifies a list of virtual buffer addresses and lengths.

bus_list Specifies a list of bus addresses and lengths.

Description
The d_map_list kernel service is a bus specific utility routine determined by the d_map_init
kernel service that accepts a list of virtual addresses and sizes and provides the resulting list
of bus addresses. This service fills out the corresponding bus address list for use by the
device in performing the DMA transfer. This service allows for scatter/gather capability of a
device and also allows the device to combine multiple requests that are contiguous with
respect to the device. The lists are passed via the dio structure. If the d_map_list service is
unable to complete the mapping due to exhausting the capacity of the provided dio
structure, an error, DMA_DIOFULL, is returned. If the d_map_list service is unable to
complete the mapping due to exhausting resources required for the mapping, an error,
DMA_NORES, is returned. In both of these cases, the bytes_done field of the dio virtual list
is set to the number of bytes successfully mapped. This byte count is a multiple of the
minxfer size for the device as provided on the call to d_map_list. The resid_iov field is set to
the index of the remaining d_iovec fields in the list. Unless the DMA_BYPASS flag is set,
this service verifies access permissions to each page. If an access violation is encountered
on a page with the list, an error, DMA_NOACC, is returned, and the bytes_done field is set
to the number of bytes preceding the faulting iovec.

Notes:

1. When the DMA_NOACC return value is received, no mapping is done, and the
bus list is undefined. In this case, the resid_iov field is set to the index of the
d_iovec that encountered the access violation.
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2. You can use the D_MAP_LIST macro provided in the /usr/include/sys/dma.h file
to code calls to the d_map_list kernel service.

Return Values
DMA_NORES Indicates that resources were exhausted during mapping.

DMA_DIOFULLIndicates that the target bus list is full.

DMA_NOACC Indicates no access permission to a page in the list.

DMA_SUCC Indicates that the entire transfer successfully mapped.

Implementation Specifics
The d_map_list kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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d_map_page Kernel Service

Purpose
Performs platform specific DMA mapping for a single page.

Syntax
#include <sys/dma.h>
#include <sys/xmem.h>

int d_map_page(*handle, flags, *baddr, *busaddr, *xmp)
struct d_handle *handle;
int flags;
caddr_t *baddr;
uint *busaddr;
struct xmem *xmp;

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.

flags Specifies one of the following flags:

DMA_READ Transfers from a device to memory.

BUS_DMA Transfers from one device to another device.

DMA_BYPASS Do not check page access.

baddr Specifies the buffer address.

busaddr Points to the busaddr field.

xmp Cross-memory descriptor for the buffer.

Description
The d_map_page kernel service is a bus specific utility routine determined by the
d_map_init kernel service that performs platform specific mapping of a single 4K or less
transfer for DMA master devices. The d_map_page kernel service is a fast path version of
the d_map_list service. The entire transfer amount must fit within a single page in order to
use this service. This service accepts a virtual address and completes the appropriate bus
address for the device to use in the DMA transfer. Unless the DMA_BYPASS flag is set, this
service also verifies access permissions to the page.

If the buffer is a global kernel space buffer, the cross-memory descriptor can be set to point
to the exported GLOBAL cross-memory descriptor, xmem_global.

If the transfer is unable to be mapped due to resource restrictions, the d_map_page service
returns DMA_NORES. If the transfer is unable to be mapped due to page access violations,
this service returns DMA_NOACC.

Note: You can use the D_MAP_PAGE macro provided in the /usr/include/sys/dma.h file
to code calls to the d_map_page kernel service.

Return Values
DMA_NORES Indicates that resources are unavailable.

DMA_NOACC Indicates no access permission to the page.
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DMA_SUCC Indicates that the busaddr parameter contains the bus address to use for
the device transfer.

Implementation Specifics
The d_map_page kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service, d_map_list kernel service.
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d_map_slave Kernel Service

Purpose
Accepts a list of virtual addresses and sizes and sets up the slave DMA controller.

Syntax
#include <sys/dma.h>>

int d_map_slave (*handle, flags, minxfer, *vlist, chan_flag)
struct d_handle *handle;
int flags;
int minxfer;
struct dio *vlist;
uint chan_flag;

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.

flags Specifies one of the following flags.

DMA_READ Transfers from a device to memory.

BUS_DMA Transfers from one device to another device.

DMA_BYPASS Do not check page access.

minxfer Specifies the minimum transfer size for the device.

vlist Specifies a list of buffer addresses and lengths.

chan_flag Specifies the device and bus specific flags for the transfer.

Description
The d_map_slave kernel service accepts a list of virtual buffer addresses and sizes and
sets up the slave DMA controller for the requested DMA transfer. This includes setting up
the system address generation hardware for a specific slave channel to indicate the
specified data buffer(s), and enabling the specific hardware channel. The d_map_slave
kernel service is not an exported kernel service, but a bus specific utility routine determined
by the d_map_init kernel service and provided to the caller through the d_handle structure.

This service allows for scatter/gather capability of the slave DMA controller and also allows
the device driver to coalesce multiple requests that are contiguous with respect to the
device. The list is passed with the dio structure. If the d_map_slave kernel service is unable
to complete the mapping due to resource, an error, DMA_NORES is returned, and the
bytes_done field of the dio list is set to the number of bytes that were successfully mapped.
This byte count is guaranteed to be a multiple of the minxfer parameter size of the device as
provided to d_map_slave. Also, the resid_iov field is set to the index of the remaining
d_iovec that could not be mapped. Unless the DMA_BYPASS flag is set, this service will
verify access permissions to each page. If an access violation is encountered on a page
within the list, an error, DMA_NOACC is returned and no mapping is done. The bytes_done
field of the virtual list is set to the number of bytes preceding the faulting iovec. Also in this
case, the resid_iov field is set to the index of the d_iovec entry that encountered the access
violation.

The virtual addresses provided in the vlist parameter may be within multiple address spaces,
distinguished by the cross memory structure pointed to for each element of the dio list. Each
cross memory pointer can point to the same cross memory descriptor for multiple buffers in
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the same address space, and for global space buffers, the pointers can be set to the
address of the exported GLOBAL cross memory descriptor, xmem_global.

The minxfer parameter specifies the absolute minimum data transfer supported by the
device( the device blocking factor). If the device supports a minimum transfer of 512 bytes
(floppy and disks for example), the minxfer parameter would be set to 512. This allows the
underlying services to map partial transfers to a correct multiple of the device block size.

Notes:

1. The d_map_slave kernel service does not support more than one outstanding
DMA transfer per channel. Attempts to do multiple slave mappings on a single
channel will corrupt the previous mapping(s).

2. You can use the D_MAP_SLAVE macro provided in the /usr/include/sys/dma.h
file to code calls to the d_map_clear kernel service.

3. The possible flag values for the chan_flag parameter can be found in
/usr/include/sys/dma.h. These flags can be logically ORed together to reflect the
desired characteristics of the device and channel.

Return Values
DMA_NORES Indicates that resources were exhausted during the mapping

DMA_NOACC Indicates no access permission to a page in the list.

DMA_BAD_MODE
Indicates that the mode specified by the chan_flag parameter is not
supported.

Implementation Specifics
The d_map_clear kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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d_unmap_list Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_list call.

Syntax
#include <sys/dma.h>

void d_unmap_list (*handle, *bus_list)
struct d_handle *handle
struct dio *bus_list

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.

bus_list Specifies a list of bus addresses and lengths.

Description
The d_unmap_list kernel service is a bus specific utility routine determined by the
d_map_init kernel service that deallocates resources previously allocated on a d_map_list
call.

The d_unmap_list kernel service must be called after I/O completion involving the area
mapped by the prior d_map_list call. Some device drivers might choose to leave pages
mapped for a long-term mapping of certain memory buffers. In this case, the driver must call
d_unmap_list when it no longer needs the long-term mapping.

Note: You can use the D_UNMAP_LIST macro provided in the /usr/include/sys/dma.h file
to code calls to the d_unmap_list kernel service. If not, you must ensure that the
d_unmap_list function pointer is non-NULL before attempting the call. Not all
platforms require the unmapping service.

Implementation Specifics
The d_unmap_list kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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d_unmap_page Kernel Service

Purpose
Deallocates resources previously allocated on a d_unmap_page call.

Syntax
#include <sys/dma.h>

void d_unmap_page (*handle, *busaddr)
struct d_handle *handle
uint *busaddr

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.

busaddr Points to the busaddr field.

Description
The d_unmap_page kernel service is a bus specific utility routine determined by the
d_map_init kernel service that deallocates resources previously allocated on a
d_map_page call for a DMA master device.

The d_unmap_page service must be called after I/O completion involving the area mapped
by the prior d_map_page call. Some device drivers might choose to leave pages mapped
for a long-term mapping of certain memory buffers. In this case, the driver must call
d_unmap_page when it no longer needs the long-term mapping.

Note: You can use the D_UNMAP_PAGE macro provided in the /usr/include/sys/dma.h
file to code calls to the d_unmap_page kernel service. If not, you must ensure that
the d_unmap_page function pointer is non-NULL before attempting the call. Not all
platforms require the unmapping service.

Implementation Specifics
The d_unmap_page kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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d_unmap_slave Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_slave call.

Syntax
#include <sys/dma.h>>

int d_unmap_slave (*handle)
struct d_handle *handle;

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.

Description
The d_unmap_slave kernel service deallocates resources previously allocated on a
d_map_slave call, disables the physical DMA channel, and returns error and status
information following the DMA transfer. The d_unmap_slave  kernel service is not an
exported kernel service, but a bus specific utility routine that is determined by the
d_map_init kernel service and provided to the caller through the d_handle structure.

Note: You can use the D_UNMAP_SLAVE macro provided in the /usr/include/sys/dma.h
file to code calls to the d_unmap_slave kernel service. If not, you must ensure that
the d_unmap_slave function pointer is non-NULL before attempting to call. No all
platforms require the unmapping service.

The device driver must call d_unmap_slave when the IO is complete involving a prior
mapping by the d_map_slave kernel service.

Note: The d_unmap_slave kernel should be paired with a previous d_map_slave call.
Multiple outstanding slave DMA transfers are not supported. This kernel service
assumes that there is no DMA in progress on the affected channel and deallocates
the current channel mapping.

Return Values
DMA_SUCC indicates successful transfer. The DMA controller did not report any errors

and that the Terminal Count was reached.

DMA_TC_NOTREACHED
Indicates a successful partial transfer. The DMA controller reported the
Terminal Count reached for the intended transfer as setup by the
d_map_slave call. Block devices consider this an error, however, for
variable length devices this may not be an error.

DMA_FAIL Indicates that the transfer failed. The DMA controller reported an error. The
device driver assumes the transfer was unsuccessful.

Implementation Specifics
The d_unmap_slave kernel service is part of the base device package of your platform.

Related Information
The d_map_init kernel service.
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iomem_att Kernel Service

Purpose
Establishes access to memory mapped I/O.

Syntax
#include <sys/types.h>
#include <sys/adspace.h>

void *iomem_att(io_map_ptr)
struct io_map *io_map_ptr;

struct io_map {
int key;
int flags;
int size;
int BID;
long long busaddress;

}

Parameters
The address of the io_map structure passes the following parameters to the iomem_att
kernel service.

key Set to IO_MEM_MAP.

flags Describes the mapping.

size Specifies the number of bytes to map.

bid Specifies the bus identifier.

busaddress Specifies the address of the bus.

Description
Note: The iomem_att kernel service is only supported on PowerPC based machines. All

mappings are done with storage attributes: cache inhibited, guarded, and coherent. It
is a violation of the PowerPC architecture to access memory with multiple storage
modes. The caller of iomem_att must ensure no mappings using other storage
attributes exist in the system.

Calling this function on on a Power RS machine causes the system to crash.

The iomem_att kernel service provides temporary addressability to memory mapped IO.
The iomem_att kernel service does the following:

• Allocates one segment of kernel address space

• Establishes kernel addressability

• Maps a contiguous region of memory mapped IO into that segment.

The addressability is valid only for the context that called iomem_att. The memory is
addressable until iomem_det is called. IO memory must be mapped each time a context is
entered, and freed before returning.

Note: Kernel address space is an exhaustible resource. When exhausted the system
crashes. A driver must never map more than two IO regions at once, or call another
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driver with an iomem_att outstanding. DMA, interrupt, and PIO kernel services may
be called with up to two IO regions mapped.

The size parameter supports from 4096 bytes to 256 MB. The caller can specify a minimum
of size bytes, but may choose to map up to 256 MB. The caller must not reference memory
beyond size bytes.

Specifying IOM_RDONLY in the flags parameter results in a read only mapping. A store to
memory mapped in this mode results in a data storage interrupt. If the flag parameter is 0
(zero) the memory is mapped read–write. All mappings are read–write on 601 based
machines.

Execution Environment
The iomem_att kernel service can be called from either the process or interrupt
environment.

Return Values
The iomem_att kernel service returns the effective address that can be used to address the
IO memory.

Implementation Specifics
The iomem_att kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The iomem_det Kernel Service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 4.1 Kernel
Extensions and Device Support Programming Concepts.
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iomem_det Kernel Service

Purpose
Releases access to memory mapped IO.

Syntax
#include <sys/types.h>
#include <sys/adspace.h>

void iomem_det (ioaddr)
void *ioaddr

Parameters
ioaddr Specifies the effective address returned by the iomem_att kernel service.

Description
The iomem_det kernel servie releases memory mapped IO addressability. A call to the
iomem_det kernel service must be made for every iomem_att call, with the address that
iomem_att returned.

Execution Evironment
The iomem_det kernel service can be called from either the process or interrupt
environment.

Return Values
The iomem_det kernel service returns no return values.

Implementation Specifics
The iomem_det kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The iomem_att kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 4.1 Kernel
Extensions and Device Support Programming Concepts.
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ns_alloc Network Service

Purpose
Allocates use of a network device driver (NDD).

Syntax
#include <sys/ndd.h>

int ns_alloc (nddname, nddpp)
       char *nddname;
       struct ndd **nddpp;

Description
The ns_alloc network service searches the Network Service (NS) device chain to find the
device driver with the specified nddname parameter. If the service finds a match, it
increments the reference count for the specified device driver. If the reference count is
incremented to 1, the ndd_open subroutine specified in the ndd structure is called to open
the device driver.

Parameters
nddname Specifies the device name to be allocated.

nddpp Indicates the address of the pointer to a ndd structure.

Examples
The following example illustrates the ns_alloc network service:

struct ndd *nddp;
error = ns_alloc(”en0”, &nddp);

Return Values
If a match is found and the ndd_open subroutine to the device is successful, a pointer to
the ndd structure for the specified device is stored in the nddpp parameter. If no match is
found or the open of the device is unsuccessful, a non-zero value is returned.

0 Indicates the operation was successful.

ENODEV Indicates an invalid network device.

ENOENT Indicates no network demuxer is available for this device.

The ndd_open routine may specify other return values.

Related Information
The ns_free network service.
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ns_free Network Service

Purpose
Relinquishes access to a network device.

Syntax
#include <sys/ndd.h>

void ns_free (nddp)
       struct ndd *nddp;

Description
The ns_free network service relinquishes access to a network device. The ns_free network
service also decrements the reference count for the specified ndd structure. If the reference
count becomes 0, the ns_free network service calls the ndd_close subroutine specified in
the ndd structure.

Parameters
nddp Specifies the ndd structure of the network device that is to be freed from

use.

Examples
The following example illustrates the ns_free network service:

struct ndd *nddp
ns_free(nddp);

Files
net/cdli.c

Related Information
The ns_alloc network service.
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rmalloc Kernel Service

Purpose
Allocates an area of memory.

Syntax
#include <sys/types.h>

caddr_t rmalloc (size, align)
int size
int align

Parameters
size Specifies the number of bytes to allocate

align Specifies alignment characteristics

Description
The rmalloc kernel service allocates an area of memory from the contiguous real memory
heap. This area is the number of bytes in length specified by the size parameter and is
aligned on the byte boundary specified by the align parameter. The align parameter is
actually the log base 2 of the desired address boundary. For example, an align value of 4
requests that the allocated area be aligned on a 16 byte boundary.

The contiguous real memory heap, real_heap, is a heap of contiguous real memory pages
located in the low 16MB of real memory. This heap is mapped virtually into the kernel
extension segment. By nature, this heap is implicitly pinned, so no explicit pinning of
allocated regions is necessary. This heap is provided primarily for device drivers whose
devices can only address 0 to 16MB of real memory, so they must “bounce” the I/O in and
out of a buffer rmalloc’ed from this heap. Also, this heap is useful for devices that require
greater than 4K transfers, but do not support scatter/gather.

The real_heap is only supported on platforms with an ISA bus. On unsupported platforms,
the rmalloc service returns NULL if the requested memory cannot be allocated.

The rmfree kernel service should be called to free allocation from a previous rmalloc call.
The rmalloc kernel service can be called from the process environment only.

Return Values
Upon successful completion, the rmalloc kernel service returns the address of the allocated
area. A NULL pointer is returned if the requested memory cannot be allocated.

Implementation Specifics
The rmalloc kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The rmfree kernel service.
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rmfree Kernel Service

Purpose
Frees memory allocated by the rmalloc kernel service.

Syntax
#include <sys/types.h>

int rmfree (pointer, size)
caddr_t pointer
int size

Parameters
pointer Specifies the address of the area in memory to free.

size Specifies the size of the area in memory to free.

Description
The rmfree kernel service frees the area of memory pointed to by the pointer parameter in
the contiguous real memory heap. This area of memory must be allocated with the rmalloc
kernel service, and the pointer must be the pointer returned from the corresponding rmalloc
kernel service call. Also, the size must be the same size that was used on the corresponding
rmalloc call.

Any memory allocated in a prior rmalloc call must be explicitly freed with an rmfree call.
This service can be called from the process environment only.

Return Values
0 Indicates successful completion

–1 Indicates one of the following:

• The area was not allocated by the rmalloc kernel service.

• The heap was not initialized for memory allocation.

Implementation Specifics
The rmfree kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The rmalloc kernel service.
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Index

A
accessing device drivers, 1-3
adapter device attributes, 6-7
add_input_type kernel service, 12-25
Address Resolution Protocol (ARP), 12-29, 13-4,

data structures, 12-34
aixgsc system call, 11-43
allocate memory, rmalloc, A-20
allocating memory, rmfree, A-21
arpcom structure, 12-35
arpreq structure, 12-38
arptab structure, 12-37
asynchronous routines, contrasted with

synchronous, 1-1

B
block address translation, 2-2
block device driver, 1-6
block I/O, 7-1
bosboot command, 14-26
buf structure, 7-3, 7-4, 8-2, 8-13, 8-16
bufcall utility, 10-20
bus I/O space, 2-17
bus memory space (example), 2-18
busresolve, 6-7

C
call side, contrasted with interrupt side, 1-1
canonical mode, 10-7
cfg_dd structure, 8-14
change methods, 6-5
character device driver, 1-7
character I/O, to block devices, 7-6
chdisp command, 11-15
commands

bosboot, 14-26
chdisp, 11-15
crash, 14-4, 14-5–14-25, 14-27, 14-47, 14-52
errinstall, 14-54
errlogger, 14-59
errmsg, 14-54
errpt, 14-52, 14-60
errupdate, 14-55, 14-58, 14-59
ifconfig, 12-39
lsdisp, 11-15
nm, 14-41
odmadd, 9-20
odmdelete, 9-20
setmaps, 10-1
slattach, 10-13
sliplogin, 10-13
sysdumpdev, 14-1
sysdumpstart, 14-2

trace, 12-39, 14-63
trcrpt, 14-63, 14-68
trcstop, 12-39

compiling
when using the kernel debugger, 14-40
when using trace, 14-83

comples locks, 5-9
configuration, 1-8
configuration databases, ODM, 6-2
configuration entry point, 1-10
configuration method, for network interface driver,

12-39
configuration methods, 6-1

network interface driver, 12-39
SCSI, 8-18
virtual file system, 9-18

configuration routine, tty drivers, 10-14
configure method, purpose of, 1-9
configure methods, 6-4
configuring devices with no parent, 6-6
controller types, I/O, 2-4
converting, addresses, 2-1
converting file descriptor to device number, 1-5
copyin kernel service, 4-5
copyinstr kernel service, 4-5
copyout kernel service, 4-5, 11-19
crash command, 14-4, 14-5–14-25, 14-27, 14-47,

14-52
pcb subcommand, 14-19
ppd subcommand, 14-14
status subcommand, 14-18
thread subcommand, 14-20

crash subcommands
buf, 14-6
buffer, 14-6
callout, 14-7
cm, 14-7
cpu, 14-7
dlock, 14-8
ds, 14-10
du, 14-10
dump, 14-10
fs, 14-11
inode, 14-11
kfp, 14-12, 14-21
knlist, 14-12, 14-47
le, 14-12, 14-47
mbuf, 14-13
mst, 14-13
ndb, 14-14
nm, 14-12, 14-14
od, 14-14, 14-27
print, 14-15
proc, 14-15
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crash subcommands (Continued)
quit, 14-17
socket, 14-17
stack, 14-17
stat, 14-18
trace, 14-12
ts, 14-21
tty, 14-21, 14-37
user, 14-21
var, 14-24
vfs, 14-24
vnode, 14-24
xmalloc, 14-25

cross-memory services, 4-12
CuDep object class, 11-15

D
d_map_clear kernel service, A-2
d_map_disable kernel service, A-3
d_map_enable, A-4
d_map_init kernel service, A-5
d_map_list kernel service, A-6
d_map_page kernel service, A-8
d_map_slave, A-10
d_unmap_list kernel service, A-12
d_unmap_page kernel service, A-13
d_unmap_slave kernel service, A-14
data packet for Ethernet, 12-26
data structures, network interface driver and ARP,

12-34
deallocates resources

d_map_clear, A-2
d_unmap_list, A-12
d_unmap_slave, A-14

debugger. See kernel debugger
debugging

network interface driver, 12-39
network interface drivers, 12-39
virtual display driver, 11-63

define method, purpose of, 1-9
define methods, 6-3
del_input_type kernel service, 12-25
devdump kernel service, 8-2
device dependent structure, 8-14, 11-16

example of, 11-33
device driver structure figure, 12-1
device driver types, block, 7-1
device head, 1-10
device methods

how invoked, 1-9
types to be provided, 1-9

Device Switch Table, 1-4
devinfo structure, 8-6
devstrat kernel service, 8-2, 8-4, 9-16
devswadd kernel service, 8-14, 11-16
devswdel kernel service, 11-17

devswqry kernel service, 11-15
direct memory access, for Micro Channel, 2-20
disable DMA, d_map_disable, A-3
display device driver, 11-14

configuration, 11-14
DLPI interfaces, 13-3
DMA

disable, d_map_disable, A-3
enable, d_map_enable, A-4

DMA master, 2-20
DMA master devices

deallocates resources, d_unmap_page, A-13
mapping, d_map_page, A-8

DMA master transfer, sample call side routine to
set up, 2-22

DMA operations, allocates and initializes
resources, d_map_init, A-5

DMA slave, 2-20
dmp_add kernel service, 14-3
dmp_del kernel service, 14-3
dmx_8022_receive function, 12-17
dmx_status function, 12-17
dump

See also system dump
system, 14-1

E
e_sleep_thread kernel service, 9-15
enable DMA, d_map_enable, A-4
entry points

configuration, 1-10
ddclose, 7-3
ddconfig, 7-2
dddump, 7-6
ddopen, 7-3
ddstrategy, 7-3
in STREAMS driver, 1-13
interrupt, 1-21
open and close, 1-11
read, 1-11
strategy, 1-12
write, 1-12

entry points of a device driver, 1-10
errinstall command, 14-54
errlogger command, 14-59
errmsg command, 14-54
error logging, 14-52–14-60

adding logging calls, 14-58
coding steps, 14-54

error record template, 14-55
errpt command, 14-52, 14-60
errsave kernel service, 14-52, 14-58, 14-60
errupdate command, 14-55, 14-58, 14-59
EUC handling, 10-10
event notification, 5-6
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F
figures

Bus I/O Space, 2-17
Bus Memory Space (Example), 2-18
CDLI Device Driver Structure, 12-1
Data Packet for Ethernet, 12-26
Device Switch Table, 1-4
Format of a Bus ID, 2-14
From File Descriptor to Device Number, 1-5
I/O Subsystem, 2-15
IOCC Control Space, 2-16
NID Data Structure Relationships, 12-34
operating system kernel, 1-3
SCSI Subsystem, 1-22
Segmented Virtual Memory, 2-2
STREAMS Driver Entry Points, 1-13
System Device Hierarchy, 6-1

file system helper, 9-16
files

/dev/error, 14-52, 14-60
/dev/mem, 14-5
/dev/scsi#, 8-2
/dev/systrctl, 14-64, 14-65, 14-67
/etc/filesystems, 9-16, 9-19
/etc/trcfmt, 14-68, 14-84
/etc/vfs, 9-16, 9-17, 9-20
/usr/adm/ras/trcfile, 14-64
/usr/lib/boot/unix, 14-5
lp, 10-11
net/if.h, 12-31, 12-38
net/if_arp.h, 12-38
str_tty.h, 10-24
sys/buf.h, 7-4, 8-2, 8-16, 14-6
sys/device.h, 11-17
sys/devinfo.h, 8-6, 12-38
sys/dir.h, 9-15
sys/dump.h, 14-3, 14-5
sys/erec.h, 14-57
sys/err_rec.h, 14-59
sys/errids.h, 14-58
sys/file.h, 14-10
sys/fshelp.h, 9-16
sys/gfs.h, 9-5
sys/mbuf.h, 12-38, 14-13
sys/proc.h, 14-1, 14-16
sys/scsi.h, 8-2, 8-3, 8-5, 8-7, 8-11
sys/socket.h, 12-38, 14-17
sys/statfs.h, 9-11
sys/sysconfig.h, 8-14
sys/timer.h, 14-7
sys/trcctl.h, 14-67
sys/trchkid.h, 14-71, 14-72, 14-84
sys/trcmacros.h, 14-71
sys/tty.h, 14-21
sys/user.h, 14-1, 14-24
sys/vattr.h, 9-13

sys/vfs.h, 9-5, 14-24
sys/vmount.h, 9-17
sys/vnode.h, 9-6, 9-7, 14-25

find_input_type kernel service, 12-25
font_data structure, 11-32
format of a bus ID, 2-14
fp_close kernel service, 8-2, 8-15
fp_ioctl kernel service, 8-2, 11-15
fp_open kernel service, 8-2, 8-15
fp_opendev kernel service, 11-15

G
GAI object class, 11-15
gfs structure, 9-2, 9-5
gfsadd kernel service, 9-3, 9-5, 9-9
gfsdel kernel service, 9-5, 9-10
gnode structure, 9-7

H
hardware interrupts, 3-2

I
I/O, 2-1
I/O address segments, for Micro Channel, 2-15
I/O controller types, 2-4
I/O spaces, for Micro Channel, 2-15
I/O subsystem, 2-15
if_attach kernel service, 12-23, 12-25
if_detach kernel service, 12-25
if_down kernel service, 12-25
if_nostat kernel service, 12-25
ifa_ifwithaddr kernel service, 12-25
ifa_ifwithdstaddr kernel service, 12-25
ifa_ifwithnet kernel service, 12-25
ifaddr structure, 12-37
ifconfig command, 12-39
ifnet structure, 12-23, 12-25, 12-31, 12-35
ifreq structure, 12-37
ifunit kernel service, 12-25
init_heap kernel service, 4-3
initialization, network device driver, 12-2
interface protocols, TLI and XTI, 13-5
interrupt level mapping, 3-6
interrupt levels, 3-2
interrupt service times, 3-5
interrupt side, contrasted with call side, 1-1
interrupt side routines, 1-21
interrupts, 3-1

necessity for device driver to handle, 1-1
IOCC Control Space, 2-16
IOCTL calls, supported by network interface driver,

12-31
iodone kernel service, 7-4, 8-1, 8-4, 8-5, 8-16, 9-16
iomem_att kernel service, A-15
iomem_det kernel service, A-17
ISA bus configuration, 3-3, 6-8
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K
kernel debugger

accessing global data, 14-48
compiler listings, 14-41
compiling options, 14-40
displaying registers, 14-50
entering, 14-26
map files, 14-42
setting breakpoints, 14-40, 14-45–14-48
stack trace, 14-51
subcommands, 14-27–14-40

breakpoints, 14-40
dereferencing a pointer, 14-40
expressions, 14-40
reserved variables, 14-38
variables, 14-38

kernel figure, 1-3
kernel services

add_input_type, 12-25
copyout, 11-19
del_input_type, 12-25
devdump, 8-2
devstrat, 8-2, 8-4, 9-16
devswadd, 8-14, 11-16
devswdel, 11-17
devswqry, 11-15
disable_lock, 10-19
dmp_add, 14-3
dmp_del, 14-3
e_sleep_thread, 9-15
errsave, 14-52, 14-58, 14-60
find_input_type, 12-25
fp_close, 8-2, 8-15
fp_ioctl, 8-2, 11-15
fp_open, 8-2, 8-15
fp_opendev, 11-15
gfsadd, 9-3, 9-5, 9-9
gfsdel, 9-5, 9-10
if_attach, 12-23, 12-25
if_detach, 12-25
if_down, 12-25
if_nostat, 12-25
ifa_ifwithaddr, 12-25
ifa_ifwithdstaddr, 12-25
ifa_ifwithnet, 12-25
ifunit, 12-25
iodone, 7-4, 8-1, 8-4, 8-5, 8-16, 9-16
lookupvp, 9-10
net_error, 12-39
pin, 8-13
pincode, 8-13, 8-15
pinu, 8-13
uiomove, 9-15, 11-16, 11-17
unlock_enable, 10-19
vfsrele, 9-11, 9-12
vm_mount, 9-9
vms_create, 9-15
vn_free, 9-6
vn_get, 9-6, 9-7

L
lc_sjis module, 10-1
lcok overview, 5-9
ldterm line discipline, 10-6
levels, interrupt, 3-2
library routines, restricted device driver use, 1-2
loading convention, STREAMS, 13-4
lock models, 5-9
locking, simple locks, 8-15
locking options, for STREAMS modules and

drivers, 13-4
lockl locks, 5-9
lookupvp kernel service, 9-10
lsdisp command, 11-15
ltpin kernel service, 4-3
ltunpin kernel service, 4-4

M
main routine, device driver does not have, 1-2
major number, 1-3
maps DMA master devices, d_map_page, A-8
mbuf structure, 12-26
memory, rmfree, A-21
memory access services, 4-5
memory allocation, rmalloc, A-20
memory allocation services, 4-1
memory management, 4-1
memory mapped I/O

iomem_att, A-15
iomem_det, A-17

memory pinning services, 4-3
Micro Channel

Direct Memory Access for, 2-20
I/O address segments for, 2-15
kinds of I/O spaces for, 2-15
programmed I/O for, 2-19

Micro Channel adapters, displaying registers,
14-50

minor number, 1-4
mount helper, 9-17
MP-efficient code, 5-13
MP-safe interrupt handling, 3-10
multiprocessing serialization, 5-8
multiprocessor environment, tty, 10-19
multiprocessor interrupt concerns, 3-10

N
nd_add_filter function, 12-14
nd_add_status function, 12-15
nd_del_filter function, 12-15
nd_del_status function, 12-16
nd_receive function, 12-12, 12-16
nd_response function, 12-17
nd_status function, 12-12, 12-17
ndd_close entry point, 12-6
ndd_ctl entry point, 12-10
ndd_open entry point, 12-5
ndd_output entry point, 12-7
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net_error kernel service, 12-39
network, interface from protocol, 13-12
network address translation to hardware address,

12-29
network device driver, 12-2

changes, 12-2
initialization and termination, 12-2

network interface driver
basic functions, 12-22
changes, 12-22
communicating with the device handler, 12-29
communicating with the IP, 12-25
configuration method for, 12-39
configuration methods, 12-39
data structures, 12-34
debugging, 12-39
initializing, 12-22
ioctl calls, 12-31
loading, 12-22
outgoing packets, 12-26
output data, 12-29
purpose, 12-22
terminating, 12-34
tracing, 12-39
translating network addresses to hardware

addresses, 12-29
network interface driver data structures, 12-34

arpcom structure, 12-35
arpreq structure, 12-38
arptab structure, 12-37
ifaddr structure, 12-37
ifnet structure, 12-23, 12-25, 12-31, 12-35
ifreq structure, 12-37
mbuf structure, 12-26
sockaddr structure, 12-29
xx_softc structure, 12-35

network interface drivers
debugging, 12-39
tracing, 12-39

network interfaces, 13-1
network protocols, 13-1

socket, writing or porting, 13-7
streams, writing or porting, 13-3

network to protocol interface, 13-14
NID Data Structure Relationships, 12-34
nls module, 10-1
nm command, 14-41
ns_add_filter, 12-18

sample DLPI call to, 12-21
ns_add_status, 12-19
ns_alloc, sample call to, 12-21
ns_alloc network service, A-18
ns_attech kernel service, 12-11
ns_del_filter, 12-19
ns_del_status, 12-19

ns_detach kernel service, 12-11
ns_free network service, A-19

O
object classes

CuDep, 11-15
GAI, 11-15
PdAt, 11-14
PdDv, 11-14
purpose of each, 6-2

Object Data Manager, 1-9
object files, pinning, 1-22
ODM configuration databases, 6-2
odmadd command, 9-20
odmdelete command, 9-20
open and close entry points, 1-11
outgoing packets, network interface driver, 12-26
output data, network interface driver, 12-29

P
page address translation, 2-3
paging, compared with pinning, 1-2
parent, configuring devices with no, 6-6
PCI bus configuration, 6-8
PdAt object class, 11-14
PdDv object class, 11-14
performance tracing. See tracing
phys_displays structure, 11-33
Physical Volume Identifier. See PVID
pin kernel service, 4-4, 8-13
pincode kernel service, 4-4, 8-13, 8-15
pinning, device driver object files, 1-22
pinning code and data, 1-2
pinu kernel service, 4-4, 8-13
preempting, device drivers subject to, 1-2
presentation space, 11-26

height, 11-27
width, 11-27

priorities, interrupt, 3-4
programmed I/O, for Micro Channel, 2-19
protocol, interface from network, 13-14
protocol address resolution, 13-4
protocol interfaces via DLPI, 13-2
protocol to network interface, 13-12
protocol to socket interface, 13-11
PVID (Physical Volume Identifier), 8-17

R
raw I/O. See character I/O
read entry point, 1-11
real time, device drivers required to execute in, 1-2
real-time timers, 5-4
rmalloc kernel service, A-20
rmfree kernel service, A-21
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S
sample code, trace format file, 14-77
sample device driver, 1-14
samples

call-side routine to set up DMA master
transfers, 2-22

cross-memory services, 4-12
DLPI call to ns_add_filter, 12-21
ifnet structure, 12-36
input device load module, 11-61
ioctl routine of network interface driver, 12-31
loading and initializing network interface driver,

12-23
mapping multicast address in NID, 12-34
MP safe code, 5-10
network device driver configuration, 12-3
ns_add_filter fragment, 12-18
output routine for network interface driver,

12-27
socket protocol, 13-15
socket receive buffer, adding data to, 13-12
virtual memory management services, 4-11
xmemdma kernel service, 4-14

sc_buf structure, 8-2–8-4
sc_inquiry structure, 8-7, 8-8
SCSI adapter device driver, 8-1
SCSI adapter device driver routines

See also SCSI device driver routines
close, 8-5
config, 8-5
ioctl, 8-5
open, 8-5
openx, 8-5
strategy, 8-5

SCSI adapter ioctl operations
IOCINFO, 8-6
SCIODIAG, 8-11
SCIODNLD, 8-11
SCIOHALT, 8-10
SCIOINQU, 8-7
SCIORESET, 8-10
SCIOSTART, 8-6
SCIOSTOP, 8-7
SCIOSTUNIT, 8-8
SCIOTRAM, 8-11
SCIOTUR, 8-9

SCSI configuration methods, 8-18
SCSI device attributes, 8-18
SCSI device driver, 8-1
SCSI device driver routines

See also SCSI adapter device driver routines
close, 8-15
config, 8-14
dump, 8-16
ioctl, 8-14
open, 8-15
read, 8-15
strategy, 8-16
write, 8-16

SCSI device driver structure
bottom half routines, 8-13
top half routines, 8-13

SCSI Subsystem, 1-22
SCSI subsystem components

SCSI adapter device driver, 8-1
SCSI device driver, 8-1

segment register contents, 2-3
Segmented Virtual Memory, 2-2
serialization, 5-1

for Streams modules and drivers, 13-4
serialization services, 5-8
service times, interrupt guidelines, 3-5
setmaps command, 10-1
simple locks, 5-9
slattach command, 10-13
slip line discipline, 10-13
sliplogin command, 10-13
sockaddr structure, 12-29
socket network protocols, writing or porting, 13-7
socket protocol

interfaces to support, 13-8
sample, 13-15

socket protocols
initializing, 13-7
loading, 13-8

socket receive buffer, sample adding data to, 13-12
source addresses, DLPI interpretation, 13-4
sptr line discipline, 10-11
states, of devices, 6-1
str_install utility, 10-14, 10-20
strategy entry point, 1-12
stream head, 10-3
streams, serialization and locking options, 13-4
STREAMS device driver, 1-7
STREAMS Driver Entry Points, 1-13
STREAMS driver routines

write-side put, 1-13
write-side service or read-side service, 1-13

STREAMS entry points, 1-13
STREAMS loading convention, 13-4
streams network protocols, writing or porting, 13-3
streams user interfaces, 13-1
STREAMS-based tty, 10-1
structures

arpcom, 12-35
arpreq, 12-38
arptab, 12-37
buf, 7-3, 7-4, 8-2, 8-13, 8-16
cfg_dd, 8-14
devinfo, 8-6
font_data, 11-32
gfs, 9-2, 9-5
gnode, 9-7
ifaddr, 12-37
ifnet, 12-23, 12-25, 12-31, 12-35
ifreq, 12-37
mbuf, 12-26
phys_displays, 11-33
sc_buf, 8-2–8-4
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structures (Continued)
sc_card_diag, 8-11
sc_inquiry, 8-7, 8-8
sockaddr, 12-29
tioc_reply, 10-5
uio, 8-14, 8-15
vfs, 9-2, 9-5
vfsops, 9-2, 9-3, 9-5
vmount, 9-3, 9-18
vnode, 9-6
vnodeops, 9-2, 9-3, 9-5
vtt_box_rc_parms, 11-31
vtt_cp_parms, 11-31
vtt_rc_parms, 11-31
xx_softc, 12-35

subroutines, sysconfig, 8-14, 9-3, 9-18, 9-19,
11-16, 12-39, 14-46

synchronization, 5-1
synchronous routines, contrasted with

asynchronous, 1-1
sysconfig subroutine, 8-14, 9-3, 9-18, 9-19, 11-16,

12-39, 14-46
sysdumpdev command, 14-1
sysdumpstart command, 14-2
system dump, 14-1

formatting, 14-4
including device driver information, 14-2
initiating, 14-1

system dump components
component dump table, 14-2
master dump table, 14-2

T
termination, network device driver, 12-2
timeout utility, 10-20
timer services, 5-2
timers

real-time, 5-4
watchdog, 5-2

tioc module, 10-4
tioc_reply structure, 10-5
TLI addresses, 13-4
TLI interface protocol, 13-5
trace command, 12-39, 14-63
trace events

defining, 14-70–14-84
event IDs, 14-72–14-84

determining location of, 14-72–14-84
format file example, 14-77–14-84
format file stanzas, 14-73–14-84
forms, 14-71–14-84
macros, 14-71–14-84

trace report
filtering, 14-86
producing, 14-68–14-70
reading, 14-85–14-86

tracing, 14-61–14-86
configuring, 14-63

controlling, 14-65–14-68
for network interface drivers, 12-39
starting, 14-62, 14-63

translating, addresses, 2-1
transparent ioctl, 10-4
trcrpt command, 14-63, 14-68
trcstop command, 12-39
tty drivers, 10-13
tty ioctls, 10-21
tty line disciplines

ldterm, 10-6
slip, 10-13
sptr, 10-11

tty multiprocessor environment, 10-19
tty open disciplines, 10-15
tty pacing disciplines, 10-15
tty stream head, 10-3
tty subsystem, 10-1
types of device drivers, 1-5

U
uc_sjis module, 10-1
uio structure, 8-14, 8-15
uiomove kernel service, 4-5, 9-15, 11-16, 11-17
unconfigure methods, 6-5
undefine methods, 6-6
uniprocessor serialization, 5-8
unpin kernel service, 4-4
unpincode kernel service, 4-4
unpinu kernel service, 4-5
user software compared with device driver, 1-1

V
vfs structure, 9-2, 9-5
vfsops structure, 9-2, 9-3, 9-5
vfsrele kernel service, 9-11, 9-12
virtual display driver, debugging, 11-63
virtual display driver routines

device specific routines, 11-20
activate, 11-20
clear rectangle, 11-22
copy full lines, 11-21
copy line segment, 11-23
deactivate, 11-24
define cursor, 11-24
draw text, 11-29
initialize, 11-25
move cursor, 11-27
scroll, 11-27
terminate, 11-28

display device driver routines, 11-16
close, 11-18
configure, 11-16
interrupt handling, 11-20
ioctl, 11-19
open, 11-17
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virtual file system
components, 9-8
configuration, 9-18
creating kernel extensions, 9-9
definition of terms, 9-21
file system helper, 9-16
installing, 9-19
loading, 9-20
mount helper, 9-17

virtual file system data structures, 9-3
gfs structure, 9-2, 9-5
gnode structure, 9-7
relationship between, 9-3
vfs structure, 9-2, 9-5
vmount, 9-3, 9-18
vnode structure, 9-6

virtual file system entry points
config, 9-9
init, 9-10
rootinit, 9-10

virtual file system operations
See also vnode operations
vfs_cntl, 9-11
vfs_mount, 9-10
vfs_root, 9-11
vfs_statfs, 9-11
vfs_sync, 9-11
vfs_unmount, 9-11
vfs_vget, 9-11

virtual memory management services, 4-6
virtual memory operations, 9-15
vm_cflush kernel service, 4-9
vm_det kernel service, 4-9
vm_mount kernel service, 4-9, 9-9
vm_move kernel service, 4-9
vm_release kernel service, 4-10
vm_releasep kernel service, 4-11
vm_umount kernel service, 4-9
vm_write kernel service, 4-10
vm_writep kernel service, 4-10
vmount structure, 9-3, 9-18

vms_att kernel service, 4-8
vms_create kernel service, 4-8, 9-15
vms_delete kernel service, 4-8
vms_handle kernel service, 4-8
vms_iowait kernel service, 4-10
vn_free kernel service, 9-6
vn_get kernel service, 9-6, 9-7
vnode operations

vn_close, 9-13
vn_getattr, 9-12
vn_hold, 9-12
vn_lookup, 9-14
vn_open, 9-13
vn_rdwr, 9-14
vn_readdir, 9-14
vn_rele, 9-12
vn_strategy, 9-14

vnode structure, 9-6
vnodeops structure, 9-2, 9-3, 9-5
vtt_box_rc_parms structure, 11-31
vtt_cp_parms structure, 11-31
vtt_rc_parms structure, 11-31

W
watchdog timers, 5-2
write entry point, 1-12
write-side or read-side service routine in

STREAMS driver, 1-13
write-side put routine in STREAMS driver, 1-13

X
xmalloc kernel service, 4-1
xmattach kernel service, 4-13
xmdetach kernel service, 4-13
xmemdma kernel service, 4-13
xmemin kernel service, 4-13
xmemout kernel service, 4-13
xmfree kernel service, 4-3
XTI addresses, 13-4
XTI interface protocol, 13-5



Reader’s Comment Form

AIX Version 4.1 Writing a Device Driver
SC23-2593-00

Please use this form only to identify publication errors or to request changes in publications. Your
comments assist us in improving our publications. Direct any requests for additional publications, technical
questions about systems, changes in programming support, and so on, to your sales representative or to
your dealer. You may use this form to communicate your comments about this publication, its organization,
or subject matter, with the understanding that we may use or distribute whatever information you supply in
any way we believe appropriate without incurring any obligation to you.

Note: To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com.

If your comment does not need a reply (for example, pointing out a typing error), check this box and do
not include your name and address below. If your comment is applicable, we will include it in the next
revision of the manual.

If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your sales representative or dealer to request additional publications.

Please print

Your Name
Company Name

Mailing Address

Date

Phone No. (         )
Area Code



Publications Department
Department 997, Internal Zip 9630
11400 Burnet Rd.
Austin, Texas 78758-3493

Fold

C
ut

 o
r 

F
ol

d 
A

lo
ng

 L
in

e

Please Do Not Staple

Fold

FoldFold

Tape Tape
Please Do Not Staple TapeTape



11


