EK-TCAAD-FS-003

TURBOchannel

Firmware Specification

On-line version.

Previous versions of this document are obsolete and should be discarded. This document
supersedes all previous versions.

clilgliltlal 1

September 1991

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors or omissions that may exist in this document.

© Digital Equipment Corporation 1991.
All Rights Reserved
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DECstation DECsystem TURBOchannel Eﬂ@ﬂnanu

The following are trademarks of MIPS Computer Systems, Inc.:
MIPS R3000 R4000

Examples provided in this specification are based on the DECstation/DECsystem 5000 Model 200 but can
apply to other TURBOchannel systems.

Digital’s TRI/ADD Program provides technical and marketing support worldwide to third-party vendors
using the SCSI, TURBOchannel, VME, and Futurebus+ interconnects to develop add-on products for open
systems.

To receive free technical support and notice of new TURBOchannel documentation, contact Digital’s TRI/ADD
Program about free membership at the numbers below.

Digital Equipment Corporation
TRI/ADD Program

100 Hamilton Avenue

Palo Alto, CA, U.S.A. 94301

FAX 1.415.853.0155
Internet address: triadd@decwrl.dec.com

U.S.A/Canada Australia France Italy
1.800.678.0PEN 0014.800.125.388 05.90.2874 1678.19087
Japan U.K. Germany

0031.12.2363 0800.89.2610 0130.81.1974

TURBOchannel Technology Transfer Agreement

Grant of Right to Use TURBOchannel Technology

In exchange for your agreeing to the warranty disclaimer and liability limitation stipulated
in this Technology Transfer Agreement, Digital Equipment Corporation (Digital) grants

at no cost to you a royalty-free nonexclusive license to use TURBOchannel technology

(as specified in the TURBOchannel Specifications) to design and develop any kind of
option board, computer system, or application-specific integrated circuit (ASIC). This
Agreement does not grant you any other rights in Digital’s patents, copyrights, trade
secrets, trademarks, or licenses to TURBOchannel technology. The purchase cost of the
TURBOchannel kit is basically the cost to reproduce the materials.

Warranty Disclaimer

The TURBOchannel technology is transferred "as is." Digital expressly disclaims
all implied warranties including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Digital does not warrant,
guarantee, or make any representations regarding the use of or the results of the
use of the specification and related documents in terms of correctness, accuracy,
or reliability. Digital believes the documentation is accurate; however, you must
assume the risk as to the results and performance of any product you develop
that is based on the TURBOchannel technology.

Limits of Liability

You agree that Digital shall not be liable to you under this Agreement for any damages,
including without limitation any lost profits or lost savings, or any consequential, inci-
dental, or punitive damages arising out of the use or inability to use the TURBOchannel
Hardware Specification and related documents, or for any claim by another party. Your
exclusive remedy under this Agreement shall be the furnishing by Digital of the technical
support provided herein. You agree to hold Digital harmless for all claims and damages
arising from any third party as a result of their use of or inability to use any product you
develop based on TURBOchannel technology.

Important Changes to the TURBOchannel Firmware Specification

This version of the TURBOchannel Firmware Specification includes all changes made
since the original specification was released. Revision bars mark technical changes added
since Version 2B of the specification.

Changes in Version 2C

= Option Module Firmware: The introduction of this chapter now contains an
overview of option module address space.

= ROM Objects: This section has been corrected to show that the ROM objects section
is required.

e msdelay: This section has been expanded.

Changes in Version 2B

s Important Changes to the TURBOchannel Firmware Specification: This
section has been added.

s Standard REX Commands, section "enfg Command", specifies the
DECstation/DECsystem 5000 Model 200 as the source of the enfg display.

Conventions Used in This Specification

s Characters in boldface type represent REX commands, ROM objects, and system
module scripts and routines.

s Characters in boldface italic type represent named variables.

s Terms in italic type represent TURBOchannel signals and variables that are replaced
with actual values.

"on

e Quotation marks (" ") indicate quoted strings.

= Monospace type is used for program call interfaces and to show text displayed on a
monitor.

g The number sign (#) represents the number of a slot. Firmware uses these numbers
to identify the location of a TURBOchannel module.

e Square brackets ([]) surround optional arguments.

= Ellipses (...) follow an argument that can be repeated.

Call Prototype

This document defines all program call interfaces in ANSI C. The example defines the call
interface to the strncat routine. This interface is called a call prototype.

char *strncat(char *sl1l, char *s2, int n);

ANSI C conventions are used to indicate parameter and routine type. Where defined types
are used, a typedef statement defining the type appears before the call prototype.

Hexadecimal Offsets

Throughout this document, field offsets of data structures are shown in hexadecimal
format unless otherwise indicated.

Contents

1 TURBOchannel System Overview

TURBOchannel Modules 1-1
TURBOchannel Slotsttt et 1-2
TURBOchannel Module ROMSc..uu i, 1-2
The ROM Executivettt 1-2
ROM Objectsottt e e e et e e e 1-3
Diagnostics . . .t e 1-3
Bootstraps 1-3
System Console e 1-4

2 System Module Firmware

Standard REX Commands 2-1
boot Command i 2-2
enfg Command it 2-2
init Command 2-3
tCommand 2-3

System-Specific REX Commands 2-3

REX Environment Variables 2-3

REX Memory Regionst e e 2-4

Program Interface 2-5

3 Option Module Firmware

Option Module ROM Format i, 3-1
ROM Header e e 3-2
ROM Objectsottt e e e e e 3-3

Option Module Firmware 3-6
boot Function 3-7
enfg Function 3-7
getc Function 3-8
init Function 3-8
initc Function 3-8
putc Function e 3-9
tFunction. 3-9

4 System Module Standard Scripts

PSt-t Script e
PSt-q Script e
cnsltest Script

5 System Module Callback Routines

Callback Routine Descriptions.
bootinit Routine.
bootread Routine.
bootwrite Routine
clear_cache Routine
console_init Routine
disableintr Routine
enableintr Routine
execute_ecmd Routine
getbitmap Routine,
getchar Routine
getenv Routine
gets Routine
getsysid Routine
gettcinfo Routine............
halt Routine
io_poll Routine
leds Routine e
longjmp Routine
memecepy Routine
memset Routine
msdelay Routine
puts Routine
printf Routine.
raise Routine
rex Routine e
setenv Routine
setyjmp Routine
showfault Routine
signal Routine
slot_address Routine
sprintf Routine
strecat Routine. e
stremp Routine.......
strepy Routine
strlen Routine.
strncat Routine e
strncmp Routine
strncpy Routine
strtol Routine
testintr Routine
time Routine e
unsetenv Routine.
wbflush Routine

Callback Vector e

11
(o N e

(J'I(J'ICNCJ‘IO‘ICJ‘I(J‘I(NClﬂO‘I(J'I(J'ICﬂCDO‘I(J'I(J'I
OO ONNNNNNO

cIJ.ICIJ.ICITICIJ.II 11
O O 0 0O O 0o

Glossary

Figures
1-1 TURBOchannel /O accesscoi i e 1-1
1-2 ~ TURBOchannel slot address space 1-2
3-1 ROM header locations 3-2
3-2 ROMobject fields i e 3-4

Tables
2-1 Standard Environment Variables 2-4
2-2 REX Memory Regions. it 2-5
3-1 ROM Header Fields i, 3-3
3-2 ROMObject Fields i 3-5
3-3 ROM Executable Objects i, 3-6
5-1 gettcinfo Implementation Parameters 5-4
5-2 Callback Vector Contents i, 5-10

Vi

]
TURBOchannel System Overview

TURBOchannel is a low-cost, high-performance module interconnection technology based
on hardware, software, and firmware components. The firmware components are specified
in this document. Hardware components are specified in the TURBOchannel Hardware
Specification.

TURBOchannel Modules

At the core of the TURBOchannel hardware is a synchronous, asymmetrical I/O channel
used to connect option modules to a system module. This channel is asymmetrical:

s The system module has read or write access to an option module.

= An option module has read or write access to the system module.

e An option module has no access to other option modules.

Figure 1-1 shows the access permitted between a TURBOchannel system module and
TURBOchannel option modules.

System
module
T
[O
[
DD B £ B I
r 1
o T T]]
f 1
| (S
| [
| I}
| [
v v
Option Option
module module

WSE2B047

Figure 1-1. TURBOchannel I/O access

TURBOchannel System Overview 1-1

TURBOchannel Slots

TURBOchannel systems divide a part of the system physical address space into slots. All
the addresses within a slot are assigned to a TURBOchannel module. One slot is always
reserved for the system module. The base address of the first slot, the size of each slot,
and the number of slots are system-specific parameters.

Figure 1-2 shows how physical address space in a TURBOchannel system is divided into
slots.

00000000
Memory
4— Slot base
Slot 0
Slot 1
Slot n I Slot size

WSE2B048

Figure 1-2. TURBOchannel slot address space

The slot number of the system module is implementation-specific, but typically the system
module is assigned the highest slot number. The slot number assigned to an option
module depends on the system module connector used by the option. Some systems may
implement fewer option module connectors than there are slots. The missing slots can be
used for integral options (components that appear to be separate TURBOchannel options
but are part of the system module) or can remain unused.

TURBOchannel Module ROMs

The system module ROM contains system module firmware. An option module ROM
contains information about the option module, including the ROM geometry. The ROM
can also contain option module firmware.

The ROM Executive

The system module firmware includes a ROM Executive Program (REX) that is responsible
for controlling the system. REX commands are used
e To invoke diagnostic and initialization routines

= To boot the system

1-2 TURBOchannel System Overview

s To examine and modify memory

e To perform other system management functions

REX commands can be entered at the system console or read from scripts stored in ROM.
ROM Objects

REX makes extensive use of ROM objects. ROM objects contain module-specific scripts and
firmware that are stored in ROM. REX uses ROM objects to perform module-dependent
operations such as bootstraps and diagnostic routines. For example, to boot a program
from a disk controller module, REX loads the ROM object named boot into memory from
the controller module and then calls boot to load the program from the disk.

REX performs all module-specific functions using firmware or scripts from the modules.
This allows REX to remain device independent, and allows new modules to be easily
developed and added to TURBOchannel systems.

Diagnostics

REX invokes all system and option module diagnostic routines, except for system module
diagnostic routines that test system resources required by REX. (These diagnostic routines
are executed directly from the system module ROM before REX is invoked.) Diagnostic
routines are module-specific and are stored in a test object. REX loads the test object into
memory and calls the object to perform module diagnostic routines.

Diagnostic routines can be divided into smaller routines that are used to test parts of a
module. When a test fails, the module number and the test routine name are displayed,
allowing the failing unit to be identified.

REX uses standard scripts from each module to invoke diagnostic routines. When REX
is invoked after system power-up, REX automatically calls the system module powerup
script. The powerup script calls the power-up self-test script pst-t or pst-q, which run
power-up tests of the system module and each option module. pst-t performs a thorough
test; pst-q performs a quick test.

Additional diagnostic scripts that perform special tests not used at power-up can be
included in module ROMs and run manually.

Bootstraps

REX invokes option bootstrap programs. A bootstrap program loads a program into
memory from a boot module. A disk controller or an Ethernet controller are typical
modules that could be used as boot devices. To perform a bootstrap, REX loads the boot
object from the boot module ROM and then calls that object to load the program. After the
program is loaded, REX transfers control to the program.

TURBOchannel System Overview 1-3

System Console

REX uses the system console to display status messages and accept operator commands.
REX configures a device or pair of devices as the system console. Modules that act as
console devices contain console drivers that are used by REX to communicate with the
device. Console device assignments are made by the operator or by a system-specific
autoconfigure procedure. These assignments are stored in the system module’s nonvolatile
memory.

1-4 TURBOchannel System Overview

2
System Module Firmware

The system module is the core of a TURBOchannel system. The TURBOchannel firmware
architecture imposes few constraints on system module implementation. The imposed
constraints relate to the interface between system module firmware and option module
firmware (see Chapter 3).

Control is passed to the system module firmware when a hardware reset occurs and when
software explicitly branches to system module firmware. (Branching is treated in the same
way as a hardware reset.) A hardware reset occurs at power-up; a hardware reset can also
occur in response to a major system error or operator action.

The ROM Executive (REX) program receives control on reset. When invoked, REX checks
the cause of the reset.

s If the reset was caused by power-up, REX performs system module power-up testing
and then calls all module-specific power-up tests. When power-up testing is complete,
REX initializes the system and option modules.

e If the reset is not due to power-up, REX performs only the initialization.

REX implements a small set of standard commands that can be entered either at the
system console or from a script. REX performs option module diagnostics by reading
standard diagnostic scripts that contain commands that run module-specific diagnostics.
REX is also responsible for configuring the system console.

Standard REX Commands

Standard REX commands are responsible for

s Bootstrapping the system

e Displaying system configuration information
s Initializing the system

s Performing system diagnostics

These commands cause TURBOchannel module-specific firmware to be executed. REX
commands are accepted either from the system console or from scripts.

The following sections describe the standard REX commands: boot, enfg, init, and t.
When entering standard REX commands note the following:

= Type the command at the prompt (>>).

s Letters in italic type are variables that are replaced with actual values.

Systemn Module Firmware 2-1

= Items enclosed in square brackets ([]) are optional.
e Ellipses (...) follow an argument that can be repeated.
s The number sign (#) represents the slot number of a module.

g Press Return to enter the command.

boot Command
>>boot [[OPTIONS] #/path [argument...]]

OPTIONS -n load but do not execute

-z number sleep for number seconds

The boot command loads and optionally executes the program specified by #/path. # is
the slot number of the module acting as the boot device and path is a device-specific file
specification. The -n option suppresses program execution after the program has been
loaded. The -z option causes the system to wait for number seconds before starting the
bootstrap. If no arguments are specified, the contents of the boot environment variable
are used as the argument list. A system-specific command can be used to set the value of
the boot environment variable. The interpretation of argument is module-specific.

For example, to load and execute the file vmunix on a disk drive with SCSI ID 0 that is
part of the SCSI bus connected to option slot 5, type boot 5/ r z0/ vhuni x.

cnfg Command

>>cnfg [#]

The enfg command displays system configuration information. If a slot number (#) is
specified, detailed configuration information for the module connected to that slot is
displayed. If no slot number is specified, brief configuration information for each module
in the system is displayed.

This example shows a enfg display with no slot number specified. The following display
shows a DECstation/DECsystem 5000 Model 200 with optional Ethernet, SCSI, and color
frame buffer modules.

>>cnfg
7: KNO2-AA DEC V5.3c TCFO 24 MB)
6: PMAD-AA DEC V5.3a TCFO (enet: 08-00-2b-0c-e0-d1)
5. PMAZ-AA DEC V5.3b TCFO scsi = 7)
2. PMAD-AA DEC V5.3a TCFO (enet: 08-00- 2b- Of - 43- 31)
1. PMAZ-AA DEC V5.3b TCFO (scsi 7)
0: PMAGBA DEC V5.3a TCFO (CX -- d= 8)

The following example shows a enfg display with slot number 7 specified. This display
shows the system and memory modules in slot number 7 of a DECstation/DECsystem
5000 Model 200:

>>cnfg 7
7: KN02 V5. 3c TCFO 24 MB
: a0000000: a07fffff 8 MB
ne : a0800000: aOf fffff 8 MB
: al000000: al7fffff 8 MB

2-2 System Module Firmware

The contents of a detailed configuration information display are module-specific. The
following example shows a cnfg display for a SCSI controller module in slot 5 of a
DECstation/DECsystem 5000 Model 200.

>>cnfg 5

5. PMAZ- AA DEC V5. 3b TCFO (SCsl =7)
DEv _PD ___________ vib ________ REV____ SCSl DEV_
rz0 Rz55 (. Q DEC DEC 0700 DR
rzl RZ56 C) DEC DEC 0200 D R
tz3 SEQ

init Command

>>init [#] [arguments...]

The init command initializes module hardware. If module number (#) is specified, only
that module is initialized. If no module number is specified, all modules are initialized.
The interpretation of argument is module-specific.

t Command
>>t [OPTIONS] #/testname [argument...]

OPTIONS -1 loop

The t command runs module tests. A test is specified by #/testname. # is the slot number
and testname is a module-specific test name.

The -1 option causes a test to be executed continuously until a system reset occurs or Ctrl-c
is pressed. The interpretation of argument is module-specific.

System-Specific REX Commands

Additional system-specific REX commands are both allowed and expected. For example,
commands that allow the operator to examine and modify memory, assign values to REX
environment variables, and implement security features.

System-specific commands cannot be contained in option module scripts, but can be
contained in system-module scripts.

REX Environment Variables

REX uses environment variables to store system parameters and to pass information
to the operating system. Some environment variables are retained in nonvolatile RAM;
others are lost when REX exits.

REX performs environment variable substitution when reading commands from scripts.
REX uses double quotation marks (") and single quotation marks (') as quote delimiters.
If the script contains the string $X or ${X} between double quotation marks, REX replaces
the string with the contents of the environment variable X. If either string appears
between single quotation marks, substitution is not performed.

Systemn Module Firmware 2-3

Table 2-1 shows the standard environment variables. Additional environment variables
can be set as implementation-specific side effects of various bootstrap and test procedures.

Table 2-1. Standard Environment Variables

Variable Function
boot! Specifies the default arguments for the boot command.
console! Controls the choice of the system console.

any value other than "s" - the system autoconfigures the consoleZ.

s" - the system uses a terminal connected to a system module. Setting console
causes the system to immediately reconfigure and initialize the system console.

haltaction® Specifies system actions after halt.

"b" - the system performs a boot command after halt.

"h" - causes the system to halt (the system can accept commands from the
system console).

"r" - the system performs a restart. If the restart fails, the system performs a
boot command.

1 Contains the screen height in lines. If this value is nonzero, the system paginates all

command output using the value as the page size.

more

osconsole Contains the slot numbers of the console drivers. If a tty driver from slot x is used

as the system console, osconsole is set to "x". If a CRT driver from slot y and a
keyboard driver from slot z are used as the system console, osconsole is set to "y,z".

testaction! Specifies the type of power-up self-test that the system runs.

"t" - specifies a thorough test of the system.

q" - specifies a quick test of the system.
m" - specifies that manufacturing-specific tests are performed3.

"

Specifies the slot number of the module that contains the current script. If no script
is active, the base system module is specified.

IEnvironment variables preserved in nonvolatile RAM.
2The autoconfigure process is system-specific.

3A testaction value of "'m" cannot be set by the operator. This value is only set if a system-specific
manufacturing jumper is installed. The jumper overrides any other setting stored in nonvolatile RAM.

REX Memory Regions
REX executes directly from the system module ROM. However, REX uses portions of

system RAM to execute module-specific firmware. REX divides memory into four regions:
0, 1, 2, and 3. Table 2-2 lists the addresses and use of each memory region in REX.

2-4 System Module Firmware

Table 2-2. REX Memory Regions

Starting Ending
Region Address Address Use
0 0xa0000000 0xa000ffff Restart block, exception vectors, REX stack and bss
1 0xa0010000 0xa0017fff Keyboard or tty drivers
2 0xa0018000 0xa001f3ff 1 CRT driver
3 0xa0020000 0xa002ffff boot, cnfg, init, and t objects

INote that the last 3 Kbytes of region 2 are reserved for backward compatibility with previous system
software.

When REX loads firmware into a region, REX first zeros the entire region. However, REX
may record what firmware was last loaded and not reload firmware that is already loaded.
Caution must be taken in assuming that any part of a region is zeroed.

Note that the REX memory region addresses are MIPS KSEG1 addresses. Code executing
from these addresses is not cached.

Program Interface

When REX transfers control to a program in memory because of a boot command or some
other system-specific command, REX calls the program with the following interface:

int program(int argc, char **argv, int nmagic, rcv *vector)

When arge and argv have standard meanings, magic is 0x30464354, and vector is a
pointer to the callback vector.

Systemn Module Firmware 2-5

3

Option Module Firmware

Option module firmware contains module-specific routines that are used for

Booting

Displaying configuration information
Performing console input and output
Performing module-specific initialization

Performing module-specific tests

All option module firmware is stored in objects in the option module ROM. Scripts are also
stored in objects in the option module ROM. Scripts are used to organize diagnostic test
sequences.

Option module address space is divided into four sections:

0x000 to 0x3DF - Option address space. This space is available to option designers.
0x3EO0 to 0x47F - ROM header.
0x480 to an option-specific size - ROM objects section.

The end of the ROM objects section to the end of the slot - Option address space. This
space is available to option designers and is dependent on the slot size shown in the
TURBOchannel System Parameters.

Option Module ROM Format

All option modules include a ROM located at the base of the TURBOchannel address
space 1. The ROM contains a header section and a ROM objects section. The ROM header
section begins at offset 0x3E0Q; the ROM objects section begins at offset 0x480.

! Some older TURBOchannel options placed their ROM at offset 0x3C0000 from the base. System
configuration code must check the old address first, and then the new address.

Option Module Firmware 3-1

ROM Header

The ROM header must be present in the option module ROM if the system is to recognize
the module. The ROM header contains information used by the system module firmware
and the operating system to determine

g Whether a module is present

e What type of module is present

s Critical ROM geometry information

The ROM header should not be accessed for the first 200 milliseconds following system
reset 2. Figure 3-1 and Table 3-1 show the assignment of fields in the ROM header. Note

that only the first byte of each word of the ROM header contains information. The first
0x3EO0 (992 decimal) bytes of the board address space is available for use by the designer.

31 15 7 0
0x3EO0 ROM width
0x3E4 ROM stride
0x3E8 ROM size
O0x3EC slot size

0x3F0 0x5555 0x55 | Ox55

0x3F4 | 0x0000 0x00 | 0x00

Ox3F8 | OXAAAA OXAA | OxAA

Ox3FC | OxFFFF OxFF | OxFF

0x400 Firmware version
0x420 Vendor name
0x440

Module name

0x460 .

Firmware type
0x470

Flags
0x480

WSE2B049

Figure 3-1. ROM header locations

2 For some older TURBOchannel options, the ROM header does not appear valid during this period.

3-2 Option Module Firmware

Table 3-1.

ROM Header Fields

Field

Contents

ROM width
ROM stride
ROM size

Slot size

55, 00, AA, FF
Module firmware
version

Module vendor name

Module name

Firmware type

Flags

ROM geometry information field; ROM width is the width of the ROM
in bytes. This value can be 1, 2, or 4.

ROM geometry information field; ROM stride is the address stride of
the ROM as seen by the system module. This value must be 4.

ROM geometry information field; ROM size is the size of the ROM
divided by 8192.

Contains the minimum TURBOchannel slot size required by the
option module divided by 4,194,304 (4 megabytes). For example, the
DECstation/DECsystem 5000 Model 200 slot size is 1.

The four pattern fields are used for test purposes and as part of the
signature of a valid ROM header.

Contains 8 ASCII characters of version information. Only graphic ASCII
codes (that is, values from 0x20 to 0x7e) are allowed. Unused characters
must contain blanks.

Contains 8 ASCII characters indicating the module manufacturer. Only
graphic ASCII codes (that is, values from 0x20 to 0x7e) are allowed.
Unused characters must contain blanks.

Contains 8 ASCII characters indicating the module name. Only graphic
ASCII codes (that is, values from 0x20 to 0x7e) are allowed. Unused
characters must contain blanks.

Contains 4 ASCII characters indicating the type of firmware present in
the module ROM. Only graphic ASCII codes (that is, values from 0x20 to
0x7e) are allowed. Unused characters must contain blanks. All modules
conforming to this specification must contain the ASCII characters
"TCFO0" (TCFzero) in this field.

A 4-byte field with bit [0] indicating whether the module implements
parity. When the bit is 1, the option module implements TURBOchannel
parity. When the bit is 0, the option module does not implement
TURBOchannel parity. All remaining bits are reserved and must be 0.

ROM Objects

The minimum requirement for the ROM objects section is a single object with a length

of 0. This object indicates the end of the ROM objects section. A ROM object contains
header information and an object body. REX uses the header information to locate objects,
determine the object type, and determine where to load firmware objects into RAM. The
object body contains either code or text. Figure 3-2 and Table 3-2 show field assignments
in the ROM object section.

Option Module Firmware 3-3

0x00

0x04

0x08

0x14

31 18 16 12 8
Rgn Type |Version
Length
Name
Body

Figure 3-2. ROM object fields

3-4 Option Module Firmware

WSE2B050

Table 3-2. ROM Obiject Fields

Field

Contents

Rgn

Type

Version
Length

Name

Body

A 2-bit field that specifies the region into which a code object is loaded
for execution. Valid values are 1, 2, and 3. Refer to the "REX Memory
Regions" section for more information.

A 4-bit field containing a code that indicates the object body type. Valid
type values are 0, 4, and 5. All other values for type are reserved.

0 - MIPS I code. The body of this type of object contains executable
code. This code must contain only instructions from the MIPS I
instruction set compiled for little-endian byte order. Coprocessor
instructions must not be present.

4 - ASCII text. The body of this type of object contains an ASCII
string terminated by 0 and stored in little-endian byte order.

5 - Symbolic Link. The body of this type of object contains an ASCII
string terminated by 0 and stored in little-endian byte order. The
string contains the name of another object. Symbolic links can be
used to redirect a reference from one object name to another. This
redirection is allowed only between objects in the same module;
redirection to another module is not allowed.

An 8-bit field containing the ROM object version number.

A 32-bit field containing the length in bytes of the object, including the
header information. The length must be a multiple of 4. A special object
with a length of zero terminates the ROM objects section of the ROM.

A 12-byte field that contains the name of the object in ASCII format.
Only graphic ASCII codes (that is, values from 0x20 to 0x7e) are allowed.
Unused characters must contain blanks.

The object content. The length of body must be a multiple of 4.

Multiple ROM objects are stored in the option module ROM beginning at offset 0x480.
Gaps between objects are not allowed. A special object with a length of zero terminates
the ROM objects section of the ROM. If no other ROM objects are provided this object is

the only entry.

Option Module Firmware 3-5

Option Module Firmware

All option module firmware is contained in one or more ROM objects stored in the module
ROM. Option module firmware is not executed directly from the option module ROM; the
firmware is always copied to RAM for execution.

All option module firmware is called at the base of the memory region where the firmware
is loaded. The call interface is identical for all firmware:

int function(int argc, char **argv, int slot, rcv *vector);

When arge and argv have standard meanings, slot is the slot number of the module and
vector is a pointer to the callback vector 1.

Table 3-3 lists the seven standard ROM executable objects.

Table 3-3. ROM Executable Objects

ROM Object Used By

kbd, tty, crt, The console terminal interface; the inite, getc, and pute functions
boot The REX boot command

cnfg The REX cnfg command

init The REX init command

t The REX t command

The kbd and tty objects must have 1 specified in the rgn field, the ert object must have
2 specified, and all remaining objects must have 3 specified. Each object must be linked to
execute in the region specified.

When REX configures the console terminal interface, REX loads the appropriate console
driver object, kbd, tty, or crt, into memory for use. REX calls the inite function of the
object once before calling the getc or putc function. If REX reinitializes the console for
any reason, the call sequence is repeated, but the driver objects are not reloaded. Console
I/0O is restricted to 8-bit characters using the ISO-Latin-1 character set.

When executing a boot command, REX first loads the boot object, then calls the boot
function to perform the boot. REX follows the same procedure when executing a cnfg
command, an init command, and a t command. Note that a single object can implement
more than one of these functions by redirecting the object references using symbolic links
and by dispatching to functions using *arguv/0] as the key.

Option module firmware can call system module routines via the ROM callback vector.
These routines are documented in Chapter 5.

The following sections describe standard option module routines.

! For more information refer to The C Programming Language, Kernighan and Ritchie, Prentice Hall, 1988

3-6 Option Module Firmware

boot Function
int boot(int argc, char **argv, int slot, rcv *vector);

This function loads a program into RAM. boot returns the execution address of the
program if the load succeeds. If the load is not successful, boot returns 0.

The REX boot command loads the boot object from the specified module ROM and calls
boot to load a program. If no object named boot is found, the boot command fails.

The value of *argv/[0] is "boot". The value of *argv[1] is a string with the form #/path.
The interpretation of path and any remaining argv entries is module-specific.

The boot object must also contain bootinit, bootread, and bootwrite routines. The
boot object must store the addresses of these routines in the callback vector. When

REX calls the program, REX passes the address of the callback vector to the boot object.
Placing the addresses of the bootinit, bootread, and bootwrite routines in the callback
vector makes them available to the programs in the bootstrap sequence. The specifications
of these routines are in Chapter 5.

Optionally, boot routines may interpret a -Noboot argument as a request to perform all
the initialization needed to use the bootinit, bootread, and bootwrite routines, but not
to attempt loading of any program that is specified. The -Noboot option should cause the
boot routine to return 0 as status 1.

cnfg Function

int cnfg(int argc,char **argv, int slot, rcv *vector);

This function displays configuration data about a module. enfg returns 0 if successful. If
not successful, enfg returns a negative value.

The REX cnfg command loads the enfg object from the specified module ROM and calls
cnfg to display module-specific configuration information. If no object named cnfg is
found, an error condition does not occur, but REX displays only information available from
the ROM header of the module.

The value of arge can be 1 or 2. The value of *argv/[0] is "cnfg". If the value of argce is 2,
*argvu[1] is a string containing the module number.

If arge is 1, enfg displays a brief configuration report; this report can be null. A brief
display should contain 30 or fewer characters and must contain only printing characters.

The following example shows a brief enfg report from each module in a
DECstation/DECsystem 5000 Model 200 that has three TURBOchannel option modules.
The text in parentheses at the end of each line is displayed by the enfg routine of each
module. The remaining text is displayed by REX.

! This argument has been used by existing software as part of a crash-dump mechanism. The crash-dump
code issues a boot request with -Noboot specified to load the boot routine and then uses the bootinit,
bootread, and bootwrite routines to dump the contents of memory.

Option Module Firmware 3-7

>>cnf g

: KNO2-AA DEC V5.3c TCFO 24 MB)

PVMAD- AA DEC V5.3a TCFO (enet: 08-00-2b-0c-e0-d1l)
PMAZ- AA DEC V5.3b TCFO scsi = 7)

PVMAD- AA DEC V5.3a TCFO (enet: 08-00-2b-0f-43-31)
PMAZ- AA DEC V5.3b TCFO scsi = 7)

PMAG BA DEC V5.3a TCFO (CX -- d=8)

eENIoN

If arge is 2, the enfg routine can display a more detailed configuration report. Each line
is terminated with a NL character.

This example shows a detailed report from module 7 in a DECstation/DECsystem 5000
Model 200. The text in parentheses in the first line, and each line that starts with nem is
displayed by the enfg routine. The remaining text is displayed by REX.

>>cnfg 7

7: KNO2- AA DEC V5. 3¢ TCFO 24 MB
me 0): a0000000: aO7fffff 8 MB
me 1): a0800000: aOf fffff 8 MB
e 2): al000000: al7fffff 8 MB

getc Function
int getc(int argc, char **argv, int slot, rcv *vector);

This console driver function is called to input a single character. The value of argc is
1 and the value of *argv/[0] is "getc". If an input character c is available, the character
is returned as (int)(unsigned char)c. If input is not available, 0 is returned. If a break
condition is detected, a negative value is returned. Input is not echoed.

init Function
int init(int argc, char **argv, int slot, rcv *vector);
This function initializes a module.

The REX init command loads the object named init into memory and calls init to perform
module-specific initialization. If no init object is found in the option module ROM, no
error occurs; no module-specific initialization is performed.

The value of arge can be 1 or greater. The value of *arguv[0] is "init". If arge is greater
than 1, the value of *argv/[1] is a character string containing the module slot number.
The interpretation of remaining argv entries is module-specific. This function returns 0 if
successful. If not successful, init returns a negative value.

The execution of the init routine by a module used as a console interface can erase the
screen of a console device, but must not require reinitialization of the console driver.

initc Function
int initc(int argc, char **argv, int slot, rcv *vector)

This function initializes the console driver. If initialization is successful, inite returns O.
If initialization is not successful, initc returns a negative value.

REX loads console drivers, then calls inite to initialize them. initec is called at least once

n

before getc or pute are called. The value of arge is 1 and the value of *argv/0] is "initc".

3-8 Option Module Firmware

putc Function
int putc(int argc, char **argv, int slot, rcv *vector);

This console driver function is called to output a single character. The value of arge is 2,
the value of *argv[0] is "putc”, and the value of *arguv[1] is the address of the character
to be output. If output is possible, putc outputs the character and 0 is returned. If output
is not possible, a negative value is returned.

t Function
int t(int argc,char **argv,int slot, rcv *vector);

The REX t command loads the object named t into memory and calls t to invoke a module-
specific test. If the t test object is not found, the t command fails. t returns 0 if successful.
If not successful, t returns a negative value:

-1 is returned if the test failed for a reason that is unlikely to affect system operation
-2 is returned if the test failed for a reason that is likely to affect system operation

-3 is returned if the test failed for a reason that indicates a severe problem that is
likely to affect the operation of REX.

The value of arge can be 2 or greater. The value of *argv/[0] is "t". The value of *argv[1]
is a string with the format #/testname. where # is the module number and testname is the
name of the module-specific test to be performed. The interpretation of remaining argv
entries is test-specific.

Option Module Firmware 3-9

4
System Module Standard Scripts

REX uses three standard diagnostic scripts to invoke module-specific diagnostics: pst-t,
pst-q, and cnsltest. If any of these scripts are not present in a module, the corresponding
power-up testing of the module is not performed. REX invokes these scripts automatically
at system power-up. Additional scripts can be present and run from the console terminal.
Option module scripts must contain only REX t commands. System module scripts can
contain any standard REX command as well as any system-specific command. All of these
scripts are optional.

pst-t Script

This script is executed on power-up when the testaction environment variable is set to "t".
pst-t invokes thorough module diagnostics. In the example, pst-t invokes 10 diagnostic
tests. Note that the TURBOchannel slot number is specified by ${ #} . During processing,
REX replaces ${ #} with the value of the # environment variable, which always contains
the TURBOchannel slot number of the script currently executing. This replacement is
required because a module can be connected to any slot.

${#}/regs

{
$l /ram

#

#;/ esar

#1/int-1b

#1/ext-1b

#rlcrc

#1/cllsn

#

#

#

#
This script is executed on power-up when the testaction environment variable is set to
"q". pst-q also invokes module diagnostics. pst-q is similar to the pst-t script, but pst-q
should be faster. Either fewer tests are executed, faster tests are executed, or both. In the
following example, note that some tests shown in the pst-t example have been removed,
presumably tests that take a long time to execute. A reasonable time for a pst-q script to

/ prom sc
/ mcst
complete execution is less than six seconds.

[int
/reg

~ ~+ ~+ ~ ~ ~ ~ ~ ~ ~ ~
BARAARARAARAH

pst-q Script

System Module Standard Scripts 4~1

~ ~+ ~ ~ ~ ~ ~
AP AR AHH
A Ay,
HH
[AZ SUASTLY SLY SIAZ ST
e e

TOO

O;O

33

(7))

(@]

cnsltest Script
This script is executed on power-up before the console terminal is enabled. cnsltest

invokes tests that would disrupt the normal operation of the console. Only modules that
contain console drivers need to provide this script.

4-2 System Module Standard Scripts

5
System Module Callback Routines

The system module implements a set of routines that are available to option module ROM
firmware via a callback vector. The address of the callback vector is passed to all ROM
object firmware and to programs loaded by the boot command. The routines are provided
for general utility or for isolating option module firmware from system-dependent features.
All calls are performed using MIPS calling conventions. The following terms are defined:
NULL(0), EOF(-1), and NL(0xA). All characters strings are in little-endian order.

Callback Routine Descriptions
The following sections describe callback routines. Table 5-2 shows callback vector contents.
bootinit Routine

int bootinit(void);

This routine is called to initialize the bootstrap input/output routines bootread and
bootwrite. bootinit must be called before using bootread or bootwrite. This routine
returns 0 if successful. If not successful, bootinit returns a negative value. (See the
section "Option Module Firmware" in Chapter 3 for more information about this routine.)

bootread Routine

int bootread(int b, void *buffer, int n);

This function uses the boot driver to read n bytes into the array of bytes with buffer as
the start address. If the boot device is block structured, the read begins at block address
b (blocks are assumed to be 512 bytes long). If the boot device is not block structured,
the interpretation of b is device-specific and is typically ignored. The routine returns the
number of bytes read if successful. If an error is detected bootread returns a negative
value. (See the section "Option Module Firmware" in Chapter 3 for more information
about this routine.)

bootwrite Routine
int bootwite(int b, void *buffer, int n);

This function uses the boot driver to write n bytes from the array of bytes with buffer as
the start address. If the boot device is block structured, the write begins at block address
b (blocks are assumed to be 512 bytes long). If the boot device is not block structured,
the interpretation of b is device-specific. The routine returns the number of bytes read

System Module Callback Routines 5-1

if successful. If an error is detected bootread returns a negative value. (See the section
"Option Module Firmware" in Chapter 3 for more information about this routine.)

clear_cache Routine

voi d cl ear _cache(void);
This routine clears all entries from the processor cache (if entries exist).
console_init Routine

int console_init(void)

This routine initializes the console I/O routines. console_init returns 0 if successful. If
not successful, console_init returns a negative value.

disableintr Routine

int disableintr(int sn);

This function disables interrupts from the TURBOchannel option module in slot sn.
disableintr returns 0 if successful. If not successful, disableintr returns a negative
value. See the section "testintr Routine" for additional information.

enableintr Routine

int enableintr(int sn);

This function enables interrupts from the TURBOchannel option module in slot sn. Once
the interrupt is enabled, testintr can be used to determine whether an interrupt is
pending. This function returns 0 if successful. If not successful, disableintr returns a
negative value. See the section "testintr Routine" for additional information.

execute_cmd Routine

i nt execute_cnd(char *cnd);

This function requests REX to execute the command string whose address is in emd. The
execute_cmd function returns 0 if successful. If not successful execute_cmd returns a
negative value. This function must not be called by option module firmware. execute_
cmd is only called by system software.

getbitmap Routine

typedef struct{ int pagesize; unsigned char bitmp[];}nmemmap;
i nt getbitmap(nmemap *map);

This function is called to construct a map of available memory at the address specified in
map. getbitmap returns the number of bytes in bitmap. If map is NULL, no map is
constructed, but the number of bytes in the map is still returned.

The pagesize field specifies the memory system page size in bytes. The value of pagesize
can be different than that normally used by the operating system.

5-2 System Module Callback Routines

bitmap is a byte array that specifies memory availability. If bit; of byte; is 1, pages;.;

is available. If this bit is 0, the page is unavailable. A page is unavailable if it does not
exist, is unreliable, or is reserved. Operating system software must not use pages marked
as unavailable.

getfchar Routine
i nt getchar(void);

This function reads the next input character ¢ from the console and returns (int)(unsigned
char)c. If an end-of-file condition (Ctrl-d) is detected, getchar returns EOF. Input
characters are not echoed.

getenv Routine
char *getenv(char *nane);

If the environment variable name is defined, this function returns a pointer to the value of
name. If name is not defined, getenv returns NULL. The pointer points to a temporary
string which may be destroyed by subsequent calls to setenv or getenv.

gets Routine
char *gets(char *s);

This function reads characters from the console and stores them in the string s until a NL
character is stored or an end-of-file condition (Ctrl-d) occurs. If any characters are stored
in s, gets returns s. If no characters are stored gets returns NULL. No means of limiting
the number of characters that this routine reads and stores are provided. Characters are
echoed as they are read and system-specific line editing functions can be performed.

geftsysid Routine
int getsysid(void);

This function returns a value containing system information. Bits [0..7] contain the
hardware version level, bits [8..15] contain the firmware revision level, bits [16..23]
contain the system type, and bits [24..31] contain the processor type.

Values for each field are specified by the System Parameter Specification for each system.
For example, a DECstation/DECsystem 5000 Model 200 returns the following:

Ox 82 02 02 20

I T T T___ rev 20 of the R3000
|| | TCFO firmare
I
I

| DECst ati on 5000

M PS R3000

System Module Callback Routines 5-3

gettcinfo Routine

typedef struct{
revision;
nt cl k perlod

In
[
int slot_size;
int io_timeout;
i nt dma_range;
i nt nmax_dma_burst;
int parity;

i nt reserved[4]
} tcinfo;

tcinfo *gettcinfo(void);
This function returns a pointer to a structure containing TURBOchannel implementation
parameters. Table 5-1 lists the TURBOchannel parameters in this structure and gives

sample parameters from a DECstation/DECsystem 5000 Model 200. Remaining fields are
reserved for future use.

Table 5-1. gettcinfo Implementation Parameters

Parameter Description DECstation/DECsystem 5000 Model 200
revision Hardware revision level 1
clk_period Clock period in nanoseconds 40
slot_size Slot size in megabytes 4
io_timeout I/O timeout in cycles 255
dma_range DMA address range in 480
megabytes
max_dma_burst Maximum DMA burst length 128
parity True if system module supports 0

TURBOchannel parity

halt Routine
void halt(int* v, int cnt);

This function is called to halt the system. When the ecnt values whose first address is

v are printed on the console, REX is initialized and commands are accepted from the
console terminal. Return from REX to the caller can be provided by a system-specific REX
command.

io_poll Routine
int io_poll(void);

This function is called to allow REX to check for pending console input or output. io_poll
raises SIGINT (4) if Ctrl-c is entered. In addition, io_poll enables all console output if
Ctrl-q is entered, and disables all console output if Ctrl-s is entered. This function returns
a nonzero value if any console input is pending. If no console input is pending, io_poll
returns 0.

5-4 System Module Callback Routines

leds Routine

void | eds(int value);

This routine causes value to be displayed on the system module LED display. The number
of bits of value that can be displayed is system dependent and can be 0. leds should be
used by option modules for debugging purposes, not for error reporting.

longjmp Routine

typedef int jnp_buf[12];
void | ongj mp(j np_buf env, int value);

This routine causes a second return from the setjmp routine that stored its context in
env. If value is not 0, setjmp returns value. If value is 0, setjmp returns 1.

memcpy Routine
void *mencpy(void *sl, void *s2, int n);
This function copies the sequence of n bytes beginning at address s2 to the address
beginning at address s1I. memcpy returns s1.
memset Routine
void *rmenmset (void *sl1l, int c, int n);

This function sets the sequence of n bytes beginning at address s1 to the value c. memset
returns s1.

msdelay Routine

voi d nedel ay(int del ay);

This routine waits for delay milliseconds to elapse before returning. The accuracy of
msdelay is system dependent. The cumulative error may become significant for large
values of int delay. Therefore, a developer should not attempt to use the msdelay routine
as a real-time clock.

TURBOchannel option functions being timed by the use of the msdelay routine may vary
in duration when run on different TURBOchannel based systems. Duration differences
may be observed when the time to complete that module’s function is dependent upon any
or all of the following:

= TURBOchannel bus speed

= DMA throughput

s CPU speed

e Memory access speed

s System architecture.

Consequently, option developers implementing firmware using the msdelay routine
tuned to a specific system platform may find that delay (the elapsed time before

returning) is insufficient for the option to complete its task if it was installed in another
TURBOchannel-based platform.

System Module Callback Routines 5-5

puts Routine
int puts(char *s);

This function writes the string s to the console. puts writes a NL character in place of the
terminating NULL character in s. If no error is detected, puts returns 0. If an error is
detected, puts returns EOF.

printf Routine
int printf(char *format, ...);

This function generates formatted output to the console. printf returns the number of
characters generated; if an output error occurs printf returns a negative value. The
format functions are a subset of those defined for ANSI C:

FMT % [FLAG] [WIDTH] FORMAT
FLAG -1+ 10
WIDTH number

FORMAT x 1 X1 dlolulcls
raise Routine
int raise(int sig);
This function raises the sig signal and returns 0.
rex Routine
voi d rex(char cnd);

This function returns control to REX. If emd is "h", the system halts. If emd is "b",
rex performs a boot command with no arguments. If cmd is "r", rex requests a system
dependent restart operation.

setenv Routine

int setenv(char *name, char *val ue);

This function sets the environment variable name to value. setenv returns 0 if
successful. If not successful, setenv returns a nonzero value.

setjmp Routine

typedef int jnp_buf[12];
int setjnp(jnp_buf env);

This function stores the current context in env and returns 0. The subsequent execution
of longjmp with erv as an argument causes a second return from setjmp with a nonzero
value.

5-6 System Module Callback Routines

showfault Routine
voi d showfaul t (void);

This function displays system-specific hardware fault data from the most recent exception
on the console.

signal Routine

typedef void (*sig_handler)(int);
sig_handl er *signal (int sig, sig_handler func);

This function specifies the address of the handler routine for the sig signal and returns
the address of the previous handler if successful. If not successful, signal returns SIG_
ERR(-1). If func is SIG_DEF(0) the default handler is specified. If func is SIG_IGN(1)
the signal is ignored. Otherwise, func must specify the address of a handler routine that
returns void and that takes a single int argument. REX calls this routine when the sig
signal is raised; sig is passed as the argument to the routine.

When a signal is raised, the handler reverts to the default handler. The default handler
reinitializes REX as if a system reset occurred.

REX raises three signals:

s SIGINT(4) when Ctrl-c is entered

s SIGSEGV(5) when a segmentation exception is detected
s SIGBUS(7) when a bus error is detected

slot_address Routine

unsi gned | ong *sl ot _address(int sn);
This function returns the base address of a TURBOchannel option in slot sn.
sprintf Routine

int sprintf(char *s, char *format, ...);

This function is identical to printf except that the output is written to the string s instead
of to the console.

strcat Routine

char *strcat(char *sl, char *s2);
This function appends string s2 to the end of string s1. strcat returns s1.
strcrnp Routine

int strcnp(char *sl1, char *s2);

This function compares successive characters from two strings, sI and s2, until it finds
characters that are not equal. If all characters are equal, stremp returns 0. If different
characters are found and the character from s1 is greater than that from s2, stremp
returns a positive number. If different characters are found and the character from s1 is

System Module Callback Routines 5-7

less than that from s2, stremp returns a negative number. (Both character strings are
assumed to be of type unsigned char).

strcpy Routine

char *strcpy(char *sl, char *s2);
This function copies the string s2 to the string sI1. strcpy returns s1.
strlen Routine

int strlen(char *sl);

This function returns the number of characters in string s1I. The terminating null
character of s1 is not included in the returned number.

strncat Routine

char *strncat(char *sl1l, char *s2, int n);

This function appends the string s2 to the string s1. The terminating null character of
s2 is not included. The function copies no more than n characters from s2. strncat then
stores a null character as the last element of s1. strncat returns s1.

strncmp Routine
int strncnp(char *sl1, char *s2, int n);

This function compares successive characters of two strings, sI and s2, up to character

n. If all compared characters are equal, strnemp returns 0. If different characters are
found and the character from s1 is greater than that from s2, strnemp returns a positive
number. If different characters are found and the character from s1 is less than that from
s2, strnemp returns a negative number. (Both character strings are assumed to be of
type unsigned char).

strncpy Routine

char *strncpy(char *sl1l, char *s2, int n);

This function copies the string s2 to the string s1. The terminating null character of s2 is
not included. The function copies no more than n characters from s2. strncpy then stores
a null character as the last element of s1. strncpy returns s1.

strtol Routine

long strtol (char *s, char **endptr, int base);

This function converts the initial characters of the string s to value type long. If the value
of endptr is not NULL, the pointer to the unconverted portion of s is stored in *endptr.
If base is 0, the function determines the base from the contents of the string. A leading
0x or 0X indicates base 16; a leading 0 indicates base 8. Otherwise the base is 10. If the
string has an improper format, s is stored in *endptr and strtol returns a value of 0.

5-8 System Module Callback Routines

testintr Routine
int testintr(int sn);

This function checks for an interrupt pending from a TURBOchannel option module in
slot sn. If an interrupt is pending, testintr returns 1. If no interrupt is pending, testintr
returns 0. Because REX runs with all interrupts masked, this function indicates only that
an interrupt is pending; REX does not provide an interrupt delivery mechanism.

The enableintr routine must be called to enable interrupts from an option module before
testing for an interrupt. The disableintr routine must be called to disable interrupts
when the testing is completed.

time Routine
long time(long *tod);

If tod does not equal NULL, this function stores the time relative to a system-specific
base time in *fod. time returns the relative time value. The least significant bit of the
time value corresponds to one second.

unsetenv Routine
i nt unsetenv(char *nane);

This function removes name from the environment table and returns 0. If name is not
defined, unsetenv returns a nonzero value.

wbflush Routine
voi d wbfl ush(void);

This routine waits for the system write buffer (if any) to be written out before returning.
Callback Vector

The callback vector is a vector (1-dimensional array) of pointers to routines. Table 5-2 lists
the contents of the callback vector.

System Module Callback Routines 5-9

Table 5-2. Callback Vector Contents

Offset typedef Description

54 int (*bootinit)();

58 int (*bootread)();

5¢ int (*bootwrite)();
e void (*clear_cache)();
98 int (*console_init)();
88 int (*disableintr)();
8c int (*enableintr)();
a8 int (*execute_cmd)();
84 int (*getbitmap)();
24 int (*getchar)();

64 char *(*getenv)();

28 char *(*gets)();

80 int (*getsysid)();

a4 tcinfo *(*gettcinfo)();
9c void (*halt)();

38 int (*io_poll)();

78 void (*leds)();

50 void (*longjmp)();

00 void *(*memcpy)();
04 void *(*memset)();
74 void (*msdelay)();

2c¢ int (*puts)();

30 int (*printf)();

44 int (*raise)();

ac void (*rex);

60 int (*setenv)();

4c int (*setjmp)();

a0 void (*showfault)();
40 sig_handler (*signal)();

6¢ unsigned long (*slot_address)();
34 int (*sprintf)();

08 char *(*streat)();

Oc int (*stremp)();

10 char *(*strepy)();

14 int (*strlen)();

18 char *(*strncat)();

20 int (*strncmp)();

5-10 System Module Callback Routines

(continued on next page)

Table 5-2 (Cont.).

Callback Vector Contents

Offset typedef Description

1lc char *(*strncpy)();

3c long (*strtol)();

90 int (*testintr)();

48 long (*time)();

68 int (*unsetenv)();

70 void (*wbflush)();

94 void *Private; pointer to system-specific data
b0 to d4 reserved

System Module Callback Routines 5-11

Glossary

ASIC
Application-Specific Integrated Circuit

Bootstrap

A procedure or device that loads a program into memory from an input device.
TURBOchannel bootstraps are run by REX.

Boot Module

A device, such as a disk controller module or an Ethernet controller module, used as a
bootstrap device.

Call prototype
The call interface definition for a routine, expressed in ANSI C.

Callback vector

A vector (1-dimensional array) of pointers to routines available to option module ROM
firmware.

Dead Zone
An area inside the system module that has restricted airflow.

DMA
Direct Memory Access

DMA burst
The flow of two or more data words one after the other during a DMA transaction.

DMA Transaction
An option module read of or write to system memory.

"Don’t care" value
A Boolean value that can be one or zero.

Glossary-1

EMC
Electromagnetic Compatibility

EMI
Electromagnetic Interference

Firmware
Software that is stored in ROM.

FRU
Field Replaceable Unit

Integral Options

Components that logically appear to be separate TURBOchannel options but are
actually part of the system module.

I/0O Transaction
A system module read of or write to an option module.

Land
A metal pad on a PC board where a wire or connector is attached

MER
Memory error register

NC pin
No Connect pin

Option Module

A TURBOchannel option not integral to the system. May contain a controller for or
interface to peripheral devices.

REX
ROM Executive

RAM
Random Access Memory

RISC
Reduced Instruction Set Computer

ROM
Read Only Memory

Glossary-2

ROM Objects

A collection of named module-specific scripts and firmware routines that are stored in
an option module’s ROM.

Script
A collection of console commands that run in a set order.

Slot
The physical location of a module or modules.

System Console
A terminal used to display status messages and accept operator commands.

System Module
Contains the main memory system and the processor

TRI/ADD Program
THIRD parties ADDing value to open systems

Glossary-3

