The **RISING** Project

Fast Beam Configuration

John Simpson Hans-Jürgen Wollersheim

CLRC Daresbury Laboratory Gesellschaft für Schwerionenforschung, Darmstadt

March 2002

1 Introduction

This paper summarises the specification and characteristics of the proposed fast beam set-up for the RISING (Rare Isotope Spectroscopic INvestigation at GSI) project. The proposed configuration of detectors using a structure that will support up to 15 Cluster Ge detectors and up to 10 Miniball detectors is presented. The layout of the beam line including the proposed beam line tracking and particle detectors is given.

2 Experimental Technique

Figure 1: Schematic drawing of the projectile fragment separator FRS with the standard detector set-up for in-flight identification of ions prior to the secondary target.

The proposed γ -ray spectroscopy of radioactive ion beams (RIBs) will be performed after in-flight isotope separation. The nuclei of interest will be produced in fragmentation of stable primary beams or projectile fission of ²³⁸U at relativistic energies impinging on a ⁹Be (target thickness $\approx 1 \ g/cm^2 \equiv 6.7 * 10^{22}$ target nuclei/ cm^2) or ²⁰⁸Pb (target thickness $\approx 1 \ g/cm^2 \equiv$ $2.9 * 10^{21}$ target nuclei/ cm^2), which is located at the entrance of the GSI projectile fragment separator FRS. An average beam intensity from the SIS heavy-ion synchrotron between 10⁹ medium heavy ions (e.g. ¹²⁹Xe) and 10⁸ ²⁰⁸Pb, ²³⁸U per second can be expected. The secondary beam rates can be calculated from the luminosity and the production cross section

> fragments $[s^{-1}] = luminosity \ [cm^{-2}s^{-1}] * cross section \ [cm^{2}]$ luminosity $[cm^{-2}s^{-1}] = target nuclei \ [cm^{-2}] * projectiles \ [s^{-1}]$

For fragmentation reactions the online EPAX-program [1] is available, while experimental data are listed for nuclear and electromagnetic fission [2]. **Example:** In case of a ${}^{129}Xe$ primary beam impinging on a ${}^{9}Be$ target one can expect $4.6 \times 10^5 {}^{110}Sn$ -fragments per second (EPAX cross section: $6.9 \times 10^{-3} [b]$).

The FRS will be operated in a standard achromatic mode, which allows a separation of fragments by combining magnetic analysis with energy loss in matter. The separated ions will be identified event-by-event with respect to the mass and atomic number (A,Z) via combined time-of-flight, position tracking, and energy loss measurements. The standard detector set-up to identify and track ions from the FRS is shown schematically in figure 1. The **fragment transmission** through the FRS can reach **30**% for **fragmentation reactions** and is $\approx 2\%$ for ²³⁸U fission [3].

3 Experiments with relativistic beams

After passing the identification set-up, the radioactive ions at relativistic energies are focused on a secondary target, which will be positioned approximately 4m after the last FRSquadrupole in the area S4 [4].

For experiments with beam energies around 100 MeV/u the projectile fragments are analysed after target interaction by a transmission **Si-array (lab. angular range ±3⁰)** and a **thick CsI-array (energy resolution** $\approx 1\%$) in order to stop the projectile fragments. A technical drawing of the S4-beamline is available in [5]. The Si-detectors are position sensitive and allow the measurement of the impact parameter for relativistic Coulomb excitation measurements. In these experiments ²⁰⁸*Pb* targets with a thickness of $0.1-0.4 \ g/cm^2$ are still acceptable with respect to the angular straggling [6]. The expected excitation cross sections can reach several hundred of millibarns [7], which favours Coulomb excitation for the fast beam campaign.

3.1 The Ge detector array

For the excited fragments moving at a high velocity (v/c=0.43 corresponding to a fragment energy of 100 MeV/u) the γ -detectors have to be positioned at forward and backward angles in order to minimize the Doppler broadening effect. The distance to the target depends on the required energy resolution.

The γ -detectors available to the RISING project are 15 Cluster detectors [8] from the Euroball project [9] and 8 3-way Ge-detectors from the Miniball project [10].

Ring	Detector	Angle	Distance to Target
#1	5 Clusters	$\theta = 15^0$	680 mm (fixed)
#2	5 Clusters	$\theta = 26.5^0$	$680-1400 \mathrm{mm}$ (variable)
#3	5 Clusters	$\theta = 34^0$	680-1400mm (variable)
#4	5 Miniball	$\theta = 46^0$	180-500mm (variable)
#5	5 Miniball	$\theta = 85^0$	180-500mm (variable)

Table 1: Position and distances of the Cluster and Miniball detectors

These detectors will be arranged in rings around the beam pipe (diameter 16cm). As a general rule the detectors will be located at angles and distances (see table 1) to obtain 1% energy resolution for nuclei of velocity v/c=0.43. Due to the Lorentz boost the main efficiency contribution comes from detectors closest to the beam line in forward direction.

In order to obtain 1% energy resolution the Clusters have to be located at 680mm, 1119mm and 1369mm in the first, second and third rings, respectively. At these positions the total efficiency of the Clusters is 1.7%. The 1st ring of Cluster detectors will be at a fixed distance from the target. For the 2nd and 3rd rings the design will allow the possibility of moving the Cluster detectors closer to the target position, for an increased efficiency but a lower overall energy resolution. If the 2nd and 3rd rings are moved in to 700mm the total efficiency will increase to 2.9% and the overall energy resolution reduces to 1.44%. A schematic layout of the Cluster and Miniball detectors is shown in figure 2.

Figure 2: Schematic layout of the Cluster and Miniball detectors in the fast RISING configuration. A 160mm diameter beam pipe passes through the array.

The Miniball detectors can be placed much closer to the target due to their segmentation and the ability to perform pulse shape analysis. The design assumes that the interaction position in the Ge crystal can be determined to 5mm. In the configuration shown in figure 2 there are 5 Miniball detectors at 46^{0} , 170mm from the target and 3 Miniball detectors at 85^{0} , 120mm from the target. There is, however, an additional design constraint imposed by the isolated hit probability and the intense atomic background. The scale of this problem depends on the detail of the reaction (beam type, target thickness, etc.) and location of detectors (distance to the target) which must be selected for each experiment.

If a 100 MeV/u ^{238}U beam on a 100 mg/cm^2 ^{208}Pb target is considered, the Miniball detectors can go as close as 400mm to the target before problems become unacceptable. Note that the U beam on a thick Pb target example is a worse case scenario and the minimum distance of 400mm needs to be estimated for each reaction type. At 400mm distance to the target the 8 Miniball detectors have an energy resolution of 0.35% and a total efficiency of 1.2%.

Adding the 15 Cluster detectors when in the 1% energy resolution position gives a total efficiency of 2.9%. This value increases to 4.2% if the Clusters are pushed in to 700mm.

For some special experiments with low Z beams and thin targets the Miniball detectors may also be pushed in to 170mm (ring #4, 46^{0}) and 120mm (ring #5, 85^{0}), which results in a maximum total efficiency of 9.9% and an average energy resolution of 0.99%.

The Cluster and Miniball detectors will be operated in stand-alone mode without any active suppression shields. Passive suppression will be available to prevent scattering between the Ge crystals in neighbouring detectors.

The array will be supported from below and will split perpendicular to the beam direction by 1m each side to allow access to the target chamber and beam line detectors and for access to the focal plane of the FRS when other experiments are taking place.

3.2 Performance characteristics

The performance of RISING is calculated for a 1.3MeV γ -ray emitted from a fragment moving at v/c=0.43. In these calculations the velocity spread in the target and the ion cone have been ignored. The results are summarised in table 2,3,4. The total energy resolution is a weighted average energy resolution scaled by the efficiency.

Ring	Detector	Angle	Distance	Energy	Efficiency
			mm	Resolution	%
				%	
#1	5 Clusters	$\theta = 15^0$	680	0.98	1.06
#2	5 Clusters	$\theta = 26.5^0$	1119	0.99	0.38
#3	5 Clusters	$\theta = 34^0$	1369	0.98	0.25
#1 - 3	15 Clusters			0.98	1.69
#4	5 Miniball	$\theta = 46^0$	400	0.35	0.87
#5	3 Miniball	$\theta = 85^0$	400	0.37	0.36
#4 - 5	8 Miniball			0.35	1.23
#1 - 5				0.72	2.93

Table 2: Performance of an array with Clusters in their 1% energy resolution positions and the Miniball detectors at 400mm.

Ring	Detector	Angle	Distance	Energy	Efficiency
			$\mathbf{m}\mathbf{m}$	Resolution	%
				%	
#1	5 Clusters	$\theta = 15^0$	680	0.98	1.06
#2	5 Clusters	$\theta = 26.5^0$	700	1.55	0.95
#3	5 Clusters	$\theta = 34^0$	700	1.86	0.90
#1 - 3	15 Clusters			1.44	2.92
#4	5 Miniball	$\theta = 46^0$	400	0.35	0.87
#5	3 Miniball	$\theta = 85^0$	400	0.37	0.36
#4 - 5	8 Miniball			0.35	1.23
#1 - 5				1.11	4.15

Table 3: Performance of an array with Clusters in the 2^{nd} and 3^{rd} rings moved closer to the target (700mm).

Ring	Detector	Angle	Distance	Energy	Efficiency
			$\mathbf{m}\mathbf{m}$	Resolution	%
				%	
#1	5 Clusters	$\theta = 15^0$	680	0.98	1.06
#2	5 Clusters	$\theta=26.5^0$	700	1.55	0.95
#3	5 Clusters	$\theta = 34^0$	700	1.86	0.90
#1 - 3	15 Clusters			1.44	2.92
		0			
#4	5 Miniball	$\theta = 46^0$	170	0.70	4.01
#5	3 Miniball	$\theta = 85^0$	120	0.94	2.99
#4 - 5	8 Miniball			0.80	7.00
#1 - 5				0.99	9.92

Table 4: Performance of an array with Clusters in the 2^{nd} and 3^{rd} rings moved closer to the target (700mm) and the Miniball detectors moved to 170mm and 120mm in the 4^{th} and 5^{th} rings, respectively. This may be possible in certain experiments where the atomic background is not a severe problem (lower Z beam, thinner target).

References

- [1] www-wnt.gsi.de/hellstr/asp/lu-elin/gsi/epaxv21m.asp
- [2] www-aix.gsi.de/~wolle/ISOMER/fission_cross.pdf
- [3] www.gsi.de/~wolle/EB_at_GSI/FRS-WORKING/IMAGES/rates.gif
- [4] www.gsi.de/~wolle/EB_at_GSI/FRS-WORKING/IMAGES/s4_setup.jpg
- [5] www.gsi.de/~wolle/EB_at_GSI/FRS-WORKING/IMAGES/adam.pdf
- [6] www.gsi.de/~wolle/EB_at_GSI/FRS-WORKING/IMAGES/ang_width.gif
- $[7] www.gsi.de/\sim wolle/EB_at_GSI/FRS-WORKING/IMAGES/coulex_cross.gif$
- [8] J. Eberth et al., Nucl. Instr. Meth. A369, 135 (1996)
- [9] J. Simpson, Z. Phys. A358, 139 (1997)
- [10] J. Eberth et al., Proceedings of Erice School 2000 and to be published in Progress in Particle and Nuclear Physics.

4 Appendix-1: www-wnt.gsi.de/hellstr/asp/lu-elin/gsi/epaxv21m.asp

EPAX Version 2.1

An Empirical Parametrization of Projectile-Fragmentation Cross Sections by K. Sümmerer and B. Blank

Welcome to this interactive version of EPAX V2.1! This program will assist you in estimating production cross sections for projectile fragmentation reaction products, using a parametrization based on experimental data from high-energy reactions.

Please enter the following information:

NOTE: Setting Z(fragment) = 999 calculates *all* possible isotopes (no transfer), while A(fragment)=999 calculates all possible isotopes with Z(fragment)!

Projectile: Target: Fragment:

 A:
 ⁵⁸
 A:
 ⁹
 A:
 ⁴⁹

 Z:
 ²⁸
 Z:
 ⁴
 Z:
 ²⁸

 Calculate the cross section!

If you want to learn more about the EPAX parametrization, such as the underlying physics and the inherent assumptions and limitations, check out these sources:

- 1. K. Sümmerer et al., Phys. Rev. C42, 2546 (1990) [PDF 1457 KB]
- 2. K. Sümmerer and B. Blank, Phys. Rev. C61, 034607 (2000) [PDF 191 KB]
- 3. K. Sümmerer, "EPAX Version 2: A modified empirical parametrization of fragmentation cross sections"

Remember that in order to obtain production *rates*, the cross sections must be folded with beam intensity and target thickness. Furthermore, the total transmission must be taken into account to predict rates at the final focus of the fragment separator. The program MOCADI can be used for these purposes.

EPAX V2.1 © 1999 K. Sümmerer (GSI-Darmstadt), B. Blank (CEN-Bordeaux) Active Server Page (ASP) encoding © 2000-2001 M. Hellström (Lund University)

5 Appendix-2: www-aix.gsi.de/~wolle/ISOMER/fission_cross.pdf

Cross sections for isotopic production in U+Be and U+Pb collisions at 750^*A MeV from fission and fragmentation

C. Engelmann et al. Z. Phys. A 352 (1995) 351

- M. Bernas et al. Phys. Lett. (1997) B415111
- M. Bernas et al. Phys. Lett B331 19 (1994)
- C. Donzaud et al. Eur Phys. Jour. A, 1 (1998)
- W. Schwab et al. Eur Phys. Jour. A, 2 179 (1998)
- J. Benlliure et al. Eur Phys. Jour. A, 2 193 (1998)

^{238}U	+Be at 750) AMeV	^{238}U	+Pb at 750) AMeV
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
49 Ca	48	5.	49 Ca		
50 Ca	14	2.	50 Ca		
^{51}Ca	2.7	0.2	^{51}Ca		
^{52}Ca	0.45	0.05	^{52}Ca		
53 Ca	0.036	0.007	53 Ca		
54 Ca	0.005	0.001	54 Ca		
55 Ca	0.002	0.0006	55 Ca		
56 Ca	0.001	0.0004	56 Ca		
$^{51}\mathrm{Sc}$	160.	13.	$^{51}\mathrm{Sc}$		
$^{52}\mathrm{Sc}$	44.	3.	$^{52}\mathrm{Sc}$		
$^{53}\mathrm{Sc}$	14.	1.	$^{53}\mathrm{Sc}$		
$^{54}\mathrm{Sc}$	2.5	0.2	$^{54}\mathrm{Sc}$		
$^{55}\mathrm{Sc}$	0.40	0.04	$^{55}\mathrm{Sc}$		
$^{56}\mathrm{Sc}$	0.05	0.006	$^{56}\mathrm{Sc}$		
$^{57}\mathrm{Sc}$	0.01	0.001	$^{57}\mathrm{Sc}$		
$^{58}\mathrm{Sc}$	0.003	0.0006	$^{58}\mathrm{Sc}$		
$^{54}\mathrm{Ti}$	34.	3.	$^{54}\mathrm{Ti}$		
$^{55}\mathrm{Ti}$	7.4	0.2	$^{55}\mathrm{Ti}$		
$^{56}\mathrm{Ti}$	4.8	0.2	$^{56}\mathrm{Ti}$		
$^{57}\mathrm{Ti}$	0.72	0.04	$^{57}\mathrm{Ti}$		
$^{58}\mathrm{Ti}$	0.19	0.02	$^{58}\mathrm{Ti}$		
$^{59}\mathrm{Ti}$	0.05	0.01	$^{59}\mathrm{Ti}$		
$^{60}\mathrm{Ti}$	0.01	0.002	$^{60}\mathrm{Ti}$		
$^{61}\mathrm{Ti}$	0.0025	0.0008	$^{61}\mathrm{Ti}$		

Table 5:

238U + Be at 750 AMeV		$\frac{238}{U + Pb} \text{ at } 750 \text{ AMeV}$			
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
$^{56}\mathrm{V}$	68.	4.	^{56}V		
$^{57}\mathrm{V}$	39.	3.	$^{57}\mathrm{V}$		
$^{58}\mathrm{V}$	9.2	0.4	^{58}V		
$^{59}\mathrm{V}$	4.1	0.2	^{59}V		
^{60}V	0.51	0.04	^{60}V		
$^{61}\mathrm{V}$	0.13	0.01	^{61}V		
^{62}V	0.021	0.003	^{62}V		
$^{63}\mathrm{V}$	0.0064	0.0011	^{63}V		
$^{64}\mathrm{V}$	0.0003	0.0003	^{64}V		
$^{59}\mathrm{Cr}$	55.	4.	$^{59}\mathrm{Cr}$		
$^{60}\mathrm{Cr}$	25.	2.	$^{60}\mathrm{Cr}$		
$^{61}\mathrm{Cr}$	5.2	0.3	$^{61}\mathrm{Cr}$		
$^{62}\mathrm{Cr}$	2.3	0.2	$^{62}\mathrm{Cr}$		
$^{63}\mathrm{Cr}$	0.34	0.03	$^{63}\mathrm{Cr}$		
$^{64}\mathrm{Cr}$	0.072	0.013	$^{64}\mathrm{Cr}$		
$^{65}\mathrm{Cr}$	0.0078	0.0010	$^{65}\mathrm{Cr}$		
$^{66}\mathrm{Cr}$	0.0015	0.0005	$^{66}\mathrm{Cr}$		
$^{67}\mathrm{Cr}$	0.0005	0.0005	$^{67}\mathrm{Cr}$		
^{61}Mn	126.	13.	^{61}Mn		
^{62}Mn	39.	3.	^{62}Mn		
^{63}Mn	24.	2.	^{63}Mn		
^{64}Mn	5.4	0.3	^{64}Mn		
^{65}Mn	1.6	0.1	^{65}Mn		
^{66}Mn	0.22	0.02	^{66}Mn		
^{67}Mn	0.04	0.005	^{67}Mn		
^{68}Mn	0.005	0.0009	⁶⁸ Mn		
^{69}Mn	0.0004	0.0003	^{69}Mn		
69			22		
⁶³ Fe	270.	35.	⁶³ Fe		
64 Fe	87.	4.	64 Fe		
65 Fe	37.	2.	⁶⁵ Fe		
⁶⁶ Fe	15.	1.	⁶⁶ Fe		
⁶⁷ Fe	4.9	0.4	⁶⁷ Fe		
⁶⁸ Fe	0.93	0.07	⁶⁸ Fe		
⁶⁹ Fe	0.23	0.03	⁶⁹ Fe		
⁷⁰ Fe	0.028	0.003	⁷⁰ Fe		
⁷¹ Fe	0.0047	0.0009	⁷¹ Fe		
⁷² Fe	0.0003	0.0003	⁷² Fe		

Table 6:

^{238}U	+Be at 750	AMeV	^{238}U	+ Pb at 750	AMeV
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
$^{65}\mathrm{Co}$	194.	45.	$^{65}\mathrm{Co}$		
$^{66}\mathrm{Co}$	150.	8.	$^{66}\mathrm{Co}$		
$^{67}\mathrm{Co}$	72.	4.	$^{67}\mathrm{Co}$		
68 Co	24.	2.	68 Co		
69 Co	12.	0.4	69 Co		
70 Co	3.1	0.1	70 Co		
$^{71}\mathrm{Co}$	0.68	0.04	$^{71}\mathrm{Co}$		
72 Co	0.10	0.01	72 Co		
73 Co	0.02	0.002	73 Co		
$^{74}\mathrm{Co}$	0.002	0.0006	$^{74}\mathrm{Co}$		
$^{75}\mathrm{Co}$	0.0003	0.00015	$^{75}\mathrm{Co}$		
⁶⁸ Ni	119.	5.	68 Ni		
⁶⁹ Ni	69.	2.	⁶⁹ Ni		
⁷⁰ Ni	35.	1.	⁷⁰ Ni		
71 Ni	15.	0.5	71 Ni		
⁷² Ni	7.7	0.2	72 Ni		
⁷³ Ni	2.5	0.1	73 Ni		
74 Ni	0.63	0.03	74 Ni		
75 Ni	0.086	0.004	75 Ni		
⁷⁶ Ni	0.014	0.001	⁷⁶ Ni		
⁷⁷ Ni	0.0014	0.0004	⁷⁷ Ni		
⁷⁸ Ni	0.0002	0.0001	⁷⁸ Ni		
70 Cu	220.	33.	⁷⁰ Cu		
71 Cu	143.	17.	71 Cu		
72 Cu	77.	8.	72 Cu		
73 Cu	43.	4.	73 Cu		
74 Cu	20.	2.	74 Cu		
$^{75}\mathrm{Cu}$	11.	1.	75 Cu		
76 Cu	2.7	0.3	76 Cu		
⁷⁷ Cu	0.86	0.07	⁷⁷ Cu		
78 Cu	0.11	0.01	⁷⁸ Cu		
79 Cu	0.015	0.002	⁷⁹ Cu		
80 Cu	0.001	0.0005	⁸⁰ Cu		

Table 7:

 $^{238}U + Be$ at 750 AMeV $^{238}U + Pb$ at 750 AMeV $\Delta \sigma \; (\mu \text{barn})$ fragment σ (µbarn) σ (µbarn) $\Delta \sigma \; (\mu \text{barn})$ fragment ⁷³Zn ⁷³Zn 22732. $^{74}\mathrm{Zn}$ 74 Zn 172.24. $^{75}\mathrm{Zn}$ 75 Zn 94. 10. $^{76}\mathrm{Zn}$ ⁷⁶Zn 73. 10. ⁷⁷Zn 77 Zn 32. 3. 78 Zn ⁷⁸Zn 16. 2. ⁷⁹Zn 79 Zn 4.50.4 $^{80}\mathrm{Zn}$ $^{80}\mathrm{Zn}$ 1.20.1 81 Zn $^{81}\mathrm{Zn}$ 0.130.01 $^{82}\mathrm{Zn}$ $^{82}\mathrm{Zn}$ 0.013 0.002 $^{83}\mathrm{Zn}$ 83 Zn 0.0010.0004 76 Ga 76 Ga 242. 7. 77 Ga 77 Ga 193.4. $^{78}\mathrm{Ga}$ $^{78}\mathrm{Ga}$ 3. 790. 190. 144. 79 Ga 79 Ga 106.1. 550.130. $^{80}\mathrm{Ga}$ $^{80}\mathrm{Ga}$ 1. 320. 70. 51. $^{81}\mathrm{Ga}$ 81 Ga 22.0.4120. 10. $^{82}\mathrm{Ga}$ $^{82}\mathrm{Ga}$ 4.3 0.133. 9. 83 Ga 83 Ga 0.810.02 84 Ga 84 Ga 0.100.005 85 Ga 85 Ga 0.00650.0009 86 Ga 86 Ga 0.0006 0.0003 $^{72}\mathrm{Ge}$ $^{72}\mathrm{Ge}$ 7300. 4000. $^{73}\mathrm{Ge}$ $^{73}\mathrm{Ge}$ $^{74}\mathrm{Ge}$ $^{74}\mathrm{Ge}$ 10000. 1000. $^{75}\mathrm{Ge}$ $^{75}\mathrm{Ge}$ 800. 8500. $^{76}\mathrm{Ge}$ $^{76}\mathrm{Ge}$ 7500. 800. $^{77}\mathrm{Ge}$ $^{77}\mathrm{Ge}$ 4300. 500. $^{78}\mathrm{Ge}$ $^{78}\mathrm{Ge}$ 370.7.1700.300. $^{79}\mathrm{Ge}$ $^{79}\mathrm{Ge}$ 371. 7.3300. 900. $^{80}\mathrm{Ge}$ $^{80}\mathrm{Ge}$ 6. 323.4600.1000. $^{81}\mathrm{Ge}$ $^{81}\mathrm{Ge}$ 291. 3. 4600. 600. $^{82}\mathrm{Ge}$ $^{82}\mathrm{Ge}$ 2.4240. 207.600. $^{83}\mathrm{Ge}$ $^{83}\mathrm{Ge}$ 1. 1700. 76. 150. $^{84}\mathrm{Ge}$ $^{84}\mathrm{Ge}$ 29.0.3500.40. $^{85}\mathrm{Ge}$ $^{85}\mathrm{Ge}$ 4.70.1130.30. $^{86}\mathrm{Ge}$ $^{86}\mathrm{Ge}$ 0.820.0270. 30. $^{87}\mathrm{Ge}$ $^{87}\mathrm{Ge}$ 0.0670.003 $^{88}\mathrm{Ge}$ $^{88}\mathrm{Ge}$ 0.0067 0.0009 $^{89}\mathrm{Ge}$ $^{89}\mathrm{Ge}$ 0.00060.0003

Table 8:

^{238}U	+Be at 750) AMeV	^{238}U	+Pb at 750) AMeV
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
^{75}As			^{75}As	6700.	4000.
^{76}As			^{76}As	10900.	1000.
^{77}As			^{77}As	12200.	1100.
^{78}As			^{78}As	8700.	800.
^{79}As			^{79}As	5800.	600.
^{80}As			^{80}As	4200.	600.
^{81}As			^{81}As	7400.	2400.
^{82}As	535.	11.	^{82}As	7200.	1400.
^{83}As	503.	10.	^{83}As	10600.	1300.
^{84}As	394.	4.	^{84}As	6600.	600.
^{85}As	247.	2.	^{85}As	5300.	700.
^{86}As	73.	0.7	^{86}As	1700.	100.
^{87}As	19.	0.4	^{87}As	520.	50.
^{88}As	2.9	0.09	^{88}As	73.	20.
^{89}As	0.34	0.01	^{89}As	7.	2.
^{90}As	0.021	0.002	^{90}As		
^{91}As	0.0032	0.0008	^{91}As		
^{92}As	0.0006	0.0003	^{92}As		
$^{77}\mathrm{Se}$			$^{77}\mathrm{Se}$	6550.	3000.
$^{78}\mathrm{Se}$			$^{78}\mathrm{Se}$	14700.	1300.
$^{79}\mathrm{Se}$			$^{79}\mathrm{Se}$	14900.	1200.
$^{80}\mathrm{Se}$			80 Se	15200.	1300.
$^{81}\mathrm{Se}$			$^{81}\mathrm{Se}$	9600.	600.
$^{82}\mathrm{Se}$			$^{82}\mathrm{Se}$	6760.	1000.
$^{83}\mathrm{Se}$	1360.	27.	83 Se	9120.	3100.
$^{84}\mathrm{Se}$	1150.	12.	84 Se	18610.	3000.
$^{85}\mathrm{Se}$	870.	261.	$^{85}\mathrm{Se}$	20620.	2700.
$^{86}\mathrm{Se}$	910.	9.	$^{86}\mathrm{Se}$	22200.	1300.
$^{87}\mathrm{Se}$	536.	5.	$^{87}\mathrm{Se}$	14230.	1700.
88 Se	279.	3.	88 Se	7130.	1000.
$^{89}\mathrm{Se}$	61.	0.6	$^{89}\mathrm{Se}$	1630.	80.
$^{90}\mathrm{Se}$	14.	0.3	$^{90}\mathrm{Se}$	400.	50.
$^{91}\mathrm{Se}$	1.1	0.02	$^{91}\mathrm{Se}$	31.	15.
$^{92}\mathrm{Se}$	0.12	0.005	$^{92}\mathrm{Se}$		
$^{93}\mathrm{Se}$	0.008	0.001	$^{93}\mathrm{Se}$		
$^{94}\mathrm{Se}$	0.002	0.0005	$^{94}\mathrm{Se}$		

Table 9:

Table 10:

^{238}U	+Be at 750) AMeV	^{238}U	+Pb at 750) AMeV
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
$^{79}\mathrm{Br}$			$^{79}\mathrm{Br}$	7900.	3000.
$^{80}\mathrm{Br}$			$^{80}\mathrm{Br}$		
$^{81}\mathrm{Br}$			$^{81}\mathrm{Br}$	17350.	1300.
$^{82}\mathrm{Br}$			$^{82}\mathrm{Br}$	17400.	1400.
$^{83}\mathrm{Br}$			$^{83}\mathrm{Br}$	14600.	1200.
$^{84}\mathrm{Br}$			$^{84}\mathrm{Br}$	11200.	1000.
$^{85}\mathrm{Br}$			$^{85}\mathrm{Br}$	10900.	3000.
$^{86}\mathrm{Br}$	1360.	14.	$^{86}\mathrm{Br}$	21250.	6200.
$^{87}\mathrm{Br}$	1280.	13.	$^{87}\mathrm{Br}$	30560.	3000.
$^{88}\mathrm{Br}$	960.	480.	$^{88}\mathrm{Br}$	37440.	4800.
$^{89}\mathrm{Br}$	1020.	10.	$^{89}\mathrm{Br}$	25900.	1300.
$^{90}\mathrm{Br}$	447.	4.	$^{90}\mathrm{Br}$	14900.	2500.
$^{91}\mathrm{Br}$	238.	2.	$^{91}\mathrm{Br}$	5940.	500.
$^{92}\mathrm{Br}$	34.	0.3	$^{92}\mathrm{Br}$	890.	50.
$^{93}\mathrm{Br}$	8.2	0.16	$^{93}\mathrm{Br}$	230.	40.
$^{94}\mathrm{Br}$	0.67	0.02	$^{94}\mathrm{Br}$		
$^{95}\mathrm{Br}$	0.075	0.003	$^{95}\mathrm{Br}$		
$^{96}\mathrm{Br}$	0.0059	0.0008	$^{96}\mathrm{Br}$		
$^{97}\mathrm{Br}$	0.0007	0.0003	$^{97}\mathrm{Br}$		
$^{79}\mathrm{Kr}$			$^{79}\mathrm{Kr}$	3750.	2000.
$^{80}\mathrm{Kr}$			$^{80}\mathrm{Kr}$	8370.	4800.
$^{81}\mathrm{Kr}$			$^{81}\mathrm{Kr}$	10900.	4500.
82 Kr			$^{82}\mathrm{Kr}$		
⁸³ Kr			$^{83}\mathrm{Kr}$	16000.	1400.
$^{84}\mathrm{Kr}$			$^{84}\mathrm{Kr}$	19100.	1600.
$^{85}\mathrm{Kr}$			$^{85}\mathrm{Kr}$	17100.	1400.
$^{86}\mathrm{Kr}$			$^{86}\mathrm{Kr}$	13300.	1800.
$^{87}\mathrm{Kr}$			$^{87}\mathrm{Kr}$	10000.	2600.
88 Kr			$^{88}\mathrm{Kr}$	26400.	8400.
89 Kr	2170.	22.	89 Kr	49600.	6000.
$^{90}\mathrm{Kr}$	1600.	16.	$^{90}\mathrm{Kr}$	59400.	5000.
$^{91}\mathrm{Kr}$	1580.	16.	$^{91}\mathrm{Kr}$	58600.	3800.
$^{92}\mathrm{Kr}$	1290.	13.	$^{92}\mathrm{Kr}$	32600.	1400.
$^{93}\mathrm{Kr}$	467.	5.	$^{93}\mathrm{Kr}$	15300.	1700.
$^{94}\mathrm{Kr}$	168.	1.7	$^{94}\mathrm{Kr}$	4840.	240.
95 Kr	29.	0.3	95 Kr	800.	50.
⁹⁶ Kr	6.	0.1	⁹⁶ Kr	180.	30.
97 Kr	0.5	0.015	97 Kr		
⁹⁸ Kr	0.054	0.003	⁹⁸ Kr		
⁹⁹ Kr	0.0026	0.0005	⁹⁹ Kr		
$^{100}{ m Kr}$	0.0005	0.0003	100 Kr		

238U + Be at 750 AMeV		$^{238}U + Pb$ at 750 AMeV			
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
82 Rb			82 Rb	2800.	1100.
83 Rb			83 Rb	10300.	5000.
84 Rb			84 Rb	9500.	4000.
85 Rb			$^{85}\mathrm{Rb}$	18100.	2400.
86 Rb			86 Rb	18700.	1500.
87 Rb			$^{87}\mathrm{Rb}$	21400.	1700.
88 Rb			88 Rb	16400.	1400.
89 Rb			89 Rb	13700.	3600.
$^{90}\mathrm{Rb}$			$^{90}\mathrm{Rb}$	18900.	5400.
$^{91}\mathrm{Rb}$	3000.	30.	$^{91}\mathrm{Rb}$	49500.	10900.
92 Rb	2040.	204.	92 Rb	57800.	4200.
93 Rb	1300.	650.	93 Rb	65440.	7200.
^{94}Rb	1450.	15.	$^{94}\mathrm{Rb}$	42800.	1750.
$^{95}\mathrm{Rb}$	1040.	10.	$^{95}\mathrm{Rb}$	29340.	3800.
$^{96}\mathrm{Rb}$	323.	3.	$^{96}\mathrm{Rb}$	10440.	870.
$^{97}\mathrm{Rb}$	122.	1.	$^{97}\mathrm{Rb}$	3090.	110.
$^{98}\mathrm{Rb}$	18.	0.4	$^{98}\mathrm{Rb}$	490.	50.
$^{99}\mathrm{Rb}$	3.2	0.1	$^{99}\mathrm{Rb}$	95.	20.
100 Rb	0.23	0.01	$^{100}\mathrm{Rb}$		
$^{101}\mathrm{Rb}$	0.025	0.002	$^{101}\mathrm{Rb}$		
102 Rb	0.0009	0.0003	$^{102}\mathrm{Rb}$		

Table 11:

$^{238}U + Be$ at 750 AMeV		$^{238}U + Pb$ at 750 AMeV			
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
84 Sr			84 Sr	320.	170.
$^{85}\mathrm{Sr}$			$^{85}\mathrm{Sr}$	1570.	900.
$^{86}\mathrm{Sr}$			$^{86}\mathrm{Sr}$	5250.	2410.
$^{87}\mathrm{Sr}$			$^{87}\mathrm{Sr}$	8000.	3000.
88 Sr			$^{88}\mathrm{Sr}$	18000.	1400.
$^{89}\mathrm{Sr}$			$^{89}\mathrm{Sr}$	20000.	2500.
$^{90}\mathrm{Sr}$			$^{90}\mathrm{Sr}$	19700.	2500.
$^{91}\mathrm{Sr}$			$^{91}\mathrm{Sr}$	13400.	5000.
$^{92}\mathrm{Sr}$			$^{92}\mathrm{Sr}$	20560.	7200.
$^{93}\mathrm{Sr}$			$^{93}\mathrm{Sr}$	37300.	12000.
$^{94}\mathrm{Sr}$	2540.	25.	$^{94}\mathrm{Sr}$	58700.	8800.
$^{95}\mathrm{Sr}$	1950.	20.	$^{95}\mathrm{Sr}$	72000.	4600.
$^{96}\mathrm{Sr}$	1180.	590.	$^{96}\mathrm{Sr}$	78600.	6700.
$^{97}\mathrm{Sr}$	1460.	15.	$^{97}\mathrm{Sr}$	42700.	1500.
$^{98}\mathrm{Sr}$	856.	9.	$^{98}\mathrm{Sr}$	30700.	3700.
$^{99}\mathrm{Sr}$	223.	2.	$^{99}\mathrm{Sr}$	7100.	550.
$^{100}\mathrm{Sr}$	53.	0.5	$^{100}\mathrm{Sr}$	1790.	70.
$^{101}\mathrm{Sr}$	7.9	0.2	$^{101}\mathrm{Sr}$	260.	30.
$^{102}\mathrm{Sr}$	0.94	0.03	$^{102}\mathrm{Sr}$		
$^{103}\mathrm{Sr}$	0.05	0.003	$^{103}\mathrm{Sr}$		
$^{104}\mathrm{Sr}$	0.0066	0.0009	$^{104}\mathrm{Sr}$		
$^{105}\mathrm{Sr}$	0.0008	0.0005	$^{105}\mathrm{Sr}$		

Table 12:

$^{238}\overline{U+Be}$ at 750 AMeV		$^{238}U + Pb$ at 750 AMeV			
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
⁸⁶ Y			⁸⁶ Y	2000.	1100.
87 Y			87 Y	9200.	4230.
⁸⁸ Y			⁸⁸ Y	11400.	4700.
^{89}Y			⁸⁹ Y		
^{90}Y			⁹⁰ Y	18340.	1500.
^{91}Y			^{91}Y	20100.	1600.
^{92}Y			^{92}Y	22600.	2900.
^{93}Y			^{93}Y	17700.	1500.
^{94}Y			^{94}Y	16500.	4000.
^{95}Y			^{95}Y	25150.	5800.
^{96}Y			^{96}Y	43400.	7300.
^{97}Y			^{97}Y	66000.	5000.
⁹⁸ Y			^{98}Y	62300.	5000.
⁹⁹ Y	1580.	16.	^{99}Y	68100.	3400.
^{100}Y	1250.	13.	100 Y	28000.	1100.
^{101}Y	514.	5.	^{101}Y	14800.	1600.
102Y	124.	1.	102 Y	3110.	180.
^{103}Y	24.	0.2	103 Y	590.	40.
104 Y	2.8	0.1	104 Y	70.	10.
^{105}Y	0.31	0.02	^{105}Y	10.	3.
^{106}Y	0.016	0.002	^{106}Y		
^{107}Y	0.0028	0.0007	107 Y		

Table 13:

^{238}U	$^{238}U + Be$ at 750 AMeV $^{238}U + Pb$ at 750 AMeV			AMeV	
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
88 Zr			88 Zr	2000.	1800.
$^{89}\mathrm{Zr}$			89 Zr	8800.	5000.
$^{90}\mathrm{Zr}$			$^{90}\mathrm{Zr}$	12000.	5000.
$^{91}\mathrm{Zr}$			$^{91}\mathrm{Zr}$	10000.	3000.
$^{92}\mathrm{Zr}$			$^{92}\mathrm{Zr}$	16400.	2100.
$^{93}\mathrm{Zr}$			$^{93}\mathrm{Zr}$	18400.	1400.
$^{94}\mathrm{Zr}$			$^{94}\mathrm{Zr}$	24100.	3100.
$^{95}\mathrm{Zr}$			$^{95}\mathrm{Zr}$	21500.	2700.
$^{96}\mathrm{Zr}$			$^{96}\mathrm{Zr}$	19300.	2500.
$^{97}\mathrm{Zr}$			$^{97}\mathrm{Zr}$	21400.	7500.
$^{98}\mathrm{Zr}$			$^{98}\mathrm{Zr}$	37100.	12200.
$^{99}\mathrm{Zr}$	2560.	26.	$^{99}\mathrm{Zr}$	70000.	10000.
$^{100}\mathrm{Zr}$	2410.	24.	$^{100}\mathrm{Zr}$	86300.	4500.
$^{101}\mathrm{Zr}$	1240.	620.	$^{101}\mathrm{Zr}$	73100.	5000.
$^{102}\mathrm{Zr}$	1390.	14.	$^{102}\mathrm{Zr}$	52600.	1700.
$^{103}\mathrm{Zr}$	674.	7.	$^{103}\mathrm{Zr}$	22000.	1900.
$^{104}\mathrm{Zr}$	280.	3.	$^{104}\mathrm{Zr}$	8700.	700.
$^{105}\mathrm{Zr}$	50.	0.5	$^{105}\mathrm{Zr}$	1150.	70.
$^{106}\mathrm{Zr}$	9.1	0.2	$^{106}\mathrm{Zr}$	210.	20.
$^{107}\mathrm{Zr}$	0.88	0.04	$^{107}\mathrm{Zr}$	25.	10.
$^{108}\mathrm{Zr}$	0.10	0.006	$^{108}\mathrm{Zr}$		
$^{109}\mathrm{Zr}$	0.0054	0.0008	$^{109}\mathrm{Zr}$		
$^{110}\mathrm{Zr}$	0.0004	0.0002	$^{110}\mathrm{Zr}$		

Table 14:

^{238}U	+Be at 750) AMeV	$^{238}U + Pb$ at 750 AMeV		
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
⁹⁰ Nb			90 Nb	3360.	1800.
$^{91}\mathrm{Nb}$			$^{91}\mathrm{Nb}$	6870.	4200.
^{92}Nb			^{92}Nb	11250.	5100.
$^{93}\mathrm{Nb}$			$^{93}\mathrm{Nb}$	10120.	4200.
^{94}Nb			^{94}Nb	13900.	4200.
$^{95}\mathrm{Nb}$			$^{95}\mathrm{Nb}$	17200.	1300.
^{96}Nb			^{96}Nb	20400.	2600.
$^{97}\mathrm{Nb}$			$^{97}\mathrm{Nb}$	24000.	3000.
$^{98}\mathrm{Nb}$			^{98}Nb	18300.	1500.
^{99}Nb			^{99}Nb	17300.	2200.
$^{100}\mathrm{Nb}$			$^{100}\mathrm{Nb}$	22000.	7500.
$^{101}\mathrm{Nb}$			$^{101}\mathrm{Nb}$	39800.	12700.
$^{102}\mathrm{Nb}$			$^{102}\mathrm{Nb}$	55300.	6600.
$^{103}\mathrm{Nb}$			$^{103}\mathrm{Nb}$	56900.	3900.
$^{104}\mathrm{Nb}$			$^{104}\mathrm{Nb}$	38900.	4300.
$^{105}\mathrm{Nb}$	1800.	180.	$^{105}\mathrm{Nb}$	19200.	900.
$^{106}\mathrm{Nb}$	383.	4.	$^{106}\mathrm{Nb}$	6340.	950.
$^{107}\mathrm{Nb}$	134.	1.	$^{107}\mathrm{Nb}$	1850.	220.
$^{108}\mathrm{Nb}$	25.	1.	$^{108}\mathrm{Nb}$	240.	29.
109 Nb	4.5	0.1	$^{109}\mathrm{Nb}$	41.	13.
$^{110}\mathrm{Nb}$	0.48	0.03	^{110}Nb	6.	3.
111 Nb	0.05	0.005	111 Nb		
$^{112}\mathrm{Nb}$	0.0025	0.0006	$^{112}\mathrm{Nb}$		
$^{113}\mathrm{Nb}$	0.0007	0.0003	$^{113}\mathrm{Nb}$		

Table 15:

$^{238}U + Be$ at 750 AMeV		$^{238}U + Pb$ at 750 AMeV			
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
⁹² Mo			^{92}Mo	2070.	1300.
^{93}Mo			^{93}Mo	4770.	2300.
^{94}Mo			^{94}Mo	8450.	3600.
^{95}Mo			^{95}Mo	12010.	3700.
^{96}Mo			^{96}Mo	15000.	4000.
^{97}Mo			$^{97}\mathrm{Mo}$	16500.	2100.
^{98}Mo			^{98}Mo	19400.	2500.
^{99}Mo			^{99}Mo	26500.	6900.
^{100}Mo			^{100}Mo	23300.	6100.
$^{101}\mathrm{Mo}$			$^{101}\mathrm{Mo}$	19400.	2500.
^{102}Mo			^{102}Mo	15500.	5000.
^{103}Mo			$^{103}\mathrm{Mo}$	30000.	7000.
^{104}Mo			^{104}Mo	44300.	10000.
^{105}Mo			$^{105}\mathrm{Mo}$	41500.	4100.
^{106}Mo			^{106}Mo	30500.	3000.
$^{107}\mathrm{Mo}$			$^{107}\mathrm{Mo}$	16200.	1500.
$^{108}\mathrm{Mo}$			$^{108}\mathrm{Mo}$	7000.	500.
$^{109}\mathrm{Mo}$			$^{109}\mathrm{Mo}$	1970.	280.
^{110}Mo			^{110}Mo	550.	70.
^{111}Mo			^{111}Mo	71.	14.
^{112}Mo			^{112}Mo	12.	5.
^{113}Mo			$^{113}\mathrm{Mo}$		
^{114}Mo	0.024	0.009	$^{114}\mathrm{Mo}$		

Table 16:

^{238}U	+Be at 750) AMeV	$^{238}U + Pb$ at 750 AMeV		
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
$^{94}\mathrm{Tc}$			$^{94}\mathrm{Tc}$	1707.	800.
$^{95}\mathrm{Tc}$			$^{95}\mathrm{Tc}$	3720.	1500.
$^{96}\mathrm{Tc}$			$^{96}\mathrm{Tc}$	5900.	2700.
$^{97}\mathrm{Tc}$			$^{97}\mathrm{Tc}$	8020.	3320.
$^{98}\mathrm{Tc}$			$^{98}\mathrm{Tc}$		
$^{99}\mathrm{Tc}$			$^{99}\mathrm{Tc}$	14190.	2000.
$^{100}\mathrm{Tc}$			$^{100}\mathrm{Tc}$	15800.	1200.
$^{101}\mathrm{Tc}$			$^{101}\mathrm{Tc}$	20200.	2500.
$^{102}\mathrm{Tc}$			$^{102}\mathrm{Tc}$	23500.	3000.
$^{103}\mathrm{Tc}$			$^{103}\mathrm{Tc}$	23700.	1800.
$^{104}\mathrm{Tc}$			$^{104}\mathrm{Tc}$	18700.	1400.
$^{105}\mathrm{Tc}$			$^{105}\mathrm{Tc}$	19900.	6000.
$^{106}\mathrm{Tc}$			$^{106}\mathrm{Tc}$	18200.	5500.
$^{107}\mathrm{Tc}$			$^{107}\mathrm{Tc}$	24200.	6500.
$^{108}\mathrm{Tc}$			$^{108}\mathrm{Tc}$	19800.	2400.
$^{109}\mathrm{Tc}$			$^{109}\mathrm{Tc}$	14200.	1700.
$^{110}\mathrm{Tc}$			$^{110}\mathrm{Tc}$	7800.	900.
$^{111}\mathrm{Tc}$			$^{111}\mathrm{Tc}$	2910.	700.
$^{112}\mathrm{Tc}$			$^{112}\mathrm{Tc}$	850.	200.
$^{113}\mathrm{Tc}$			$^{113}\mathrm{Tc}$	220.	40.
$^{114}\mathrm{Tc}$			$^{114}\mathrm{Tc}$	25.	7.
$^{115}\mathrm{Tc}$			$^{115}\mathrm{Tc}$	9.	4.
$^{116}\mathrm{Tc}$	0.081	0.016	$^{116}\mathrm{Tc}$		
$^{117}\mathrm{Tc}$	0.0084	0.0050	$^{117}\mathrm{Tc}$		

Table 17:

$^{238}U + Be$ at 750 AMeV		$^{238}U + Pb$ at 750 AMeV			
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
98 Ru			98 Ru	5550.	2550.
99 Ru			$^{99}\mathrm{Ru}$	7000.	3200.
$^{100}\mathrm{Ru}$			$^{100}\mathrm{Ru}$	7530.	3140.
$^{101}\mathrm{Ru}$			$^{101}\mathrm{Ru}$	12800.	2600.
$^{102}\mathrm{Ru}$			102 Ru	14900.	1100.
$^{103}\mathrm{Ru}$			$^{103}\mathrm{Ru}$	18100.	1400.
$^{104}\mathrm{Ru}$			$^{104}\mathrm{Ru}$	23400.	6100.
$^{105}\mathrm{Ru}$			$^{105}\mathrm{Ru}$	21100.	2700.
$^{106}\mathrm{Ru}$			$^{106}\mathrm{Ru}$	19300.	2400.
$^{107}\mathrm{Ru}$			$^{107}\mathrm{Ru}$	16900.	4500.
$^{108}\mathrm{Ru}$			$^{108}\mathrm{Ru}$	14500.	6000.
109 Ru			109 Ru	19300.	6400.
$^{110}\mathrm{Ru}$			$^{110}\mathrm{Ru}$	21500.	4300.
111 Ru			111 Ru	14500.	1600.
112 Ru			112 Ru	10100.	1400.
$^{113}\mathrm{Ru}$			$^{113}\mathrm{Ru}$	4370.	500.
114 Ru			114 Ru	1570.	200.
115 Ru			115 Ru	480.	100.
$^{116}\mathrm{Ru}$			116 Ru	110.	20.
$^{117}\mathrm{Ru}$			$^{117}\mathrm{Ru}$	20.	8.
$^{118}\mathrm{Ru}$			$^{118}\mathrm{Ru}$		
119 Ru	0.014	0.006	119 Ru		

Table 18:

^{238}U	+Be at 750) AMeV	$2^{238}U + Pb$ at 750 AMeV		
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
99 Rh			99 Rh	1220.	670.
$^{100}\mathrm{Rh}$			$^{100}\mathrm{Rh}$	5360.	2460.
$^{101}\mathrm{Rh}$			$^{101}\mathrm{Rh}$	6000.	2800.
$^{102}\mathrm{Rh}$			$^{102}\mathrm{Rh}$	6500.	2000.
103 Rh			103 Rh		
104 Rh			104 Rh	12500.	1000.
$^{105}\mathrm{Rh}$			105 Rh	14600.	1100.
$^{106}\mathrm{Rh}$			$^{106}\mathrm{Rh}$	17700.	2200.
$^{107}\mathrm{Rh}$			$^{107}\mathrm{Rh}$	20500.	5300.
$^{108}\mathrm{Rh}$			$^{108}\mathrm{Rh}$	18200.	1400.
$^{109}\mathrm{Rh}$			$^{109}\mathrm{Rh}$	16400.	1300.
$^{110}\mathrm{Rh}$			$^{110}\mathrm{Rh}$	14300.	3800.
111 Rh			111 Rh	16500.	4610.
112 Rh			112 Rh	17300.	4700.
113 Rh			113 Rh	18030.	2300.
114 Rh			114 Rh	10400.	1100.
$^{115}\mathrm{Rh}$			115 Rh	7000.	1050.
$^{116}\mathrm{Rh}$			116 Rh	2740.	300.
117 Rh			117 Rh	1000.	200.
$^{118}\mathrm{Rh}$			118 Rh	230.	70.
$^{119}\mathrm{Rh}$			119 Rh	45.	20.
120 Rh			120 Rh	4.	2.
$^{121}\mathrm{Rh}$			$^{121}\mathrm{Rh}$		
122 Rh	0.013	0.006	122 Rh		

Table 19:

^{238}U	$^{238}U + Be$ at 750 AMeV		$^{238}U + Pb$ at 750 AMeV		
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
$^{101}\mathrm{Pd}$			$^{101}\mathrm{Pd}$	780.	450.
$^{102}\mathrm{Pd}$			$^{102}\mathrm{Pd}$	2960.	1840.
$^{103}\mathrm{Pd}$			$^{103}\mathrm{Pd}$	5320.	2210.
$^{104}\mathrm{Pd}$			$^{104}\mathrm{Pd}$	4700.	2000.
$^{105}\mathrm{Pd}$			$^{105}\mathrm{Pd}$	9100.	1400.
$^{106}\mathrm{Pd}$			$^{106}\mathrm{Pd}$	12600.	1600.
$^{107}\mathrm{Pd}$			$^{107}\mathrm{Pd}$	13700.	1100.
$^{108}\mathrm{Pd}$			$^{108}\mathrm{Pd}$	16700.	1300.
$^{109}\mathrm{Pd}$			$^{109}\mathrm{Pd}$	21900.	5700.
$^{110}\mathrm{Pd}$			$^{110}\mathrm{Pd}$	19700.	2500.
$^{111}\mathrm{Pd}$			$^{111}\mathrm{Pd}$	16200.	1200.
$^{112}\mathrm{Pd}$			$^{112}\mathrm{Pd}$	14600.	1100.
$^{113}\mathrm{Pd}$			$^{113}\mathrm{Pd}$	13500.	3800.
$^{114}\mathrm{Pd}$			$^{114}\mathrm{Pd}$	15300.	3100.
$^{115}\mathrm{Pd}$			$^{115}\mathrm{Pd}$	18100.	3000.
$^{116}\mathrm{Pd}$			$^{116}\mathrm{Pd}$	14600.	1700.
$^{117}\mathrm{Pd}$			$^{117}\mathrm{Pd}$	9250.	1200.
$^{118}\mathrm{Pd}$			$^{118}\mathrm{Pd}$	5020.	650.
$^{119}\mathrm{Pd}$			$^{119}\mathrm{Pd}$	1900.	270.
$^{120}\mathrm{Pd}$			$^{120}\mathrm{Pd}$	640.	140.
$^{121}\mathrm{Pd}$			$^{121}\mathrm{Pd}$	160.	40.
$^{122}\mathrm{Pd}$			$^{122}\mathrm{Pd}$	40.	10.
$^{123}\mathrm{Pd}$			$^{123}\mathrm{Pd}$	10.	4.

Table 20:

^{238}U	+Be at 750) AMeV	$^{238}U + Pb$ at 750 AMeV		
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
$^{103}\mathrm{Ag}$			^{103}Ag	300.	130.
$^{104}\mathrm{Ag}$			^{104}Ag	1000.	640.
^{105}Ag			$^{105}\mathrm{Ag}$	3850.	1600.
^{106}Ag			^{106}Ag	3820.	1600.
^{107}Ag			^{107}Ag		
^{108}Ag			^{108}Ag	9000.	1000.
^{109}Ag			^{109}Ag	11700.	1000.
^{110}Ag			^{110}Ag	14600.	1100.
^{111}Ag			^{111}Ag	17900.	2300.
^{112}Ag			^{112}Ag	20800.	5400.
^{113}Ag			^{113}Ag	18000.	1400.
$^{114}\mathrm{Ag}$			^{114}Ag	15600.	1200.
^{115}Ag			^{115}Ag	13900.	1800.
^{116}Ag			^{116}Ag	14200.	3400.
^{117}Ag			^{117}Ag	15440.	3500.
^{118}Ag			^{118}Ag	15700.	2300.
^{119}Ag			^{119}Ag	11300.	1500.
$^{120}\mathrm{Ag}$			$^{120}\mathrm{Ag}$	6500.	1000.
^{121}Ag			$^{121}\mathrm{Ag}$	3700.	500.
^{122}Ag			^{122}Ag	1250.	200.
^{123}Ag			^{123}Ag	570.	160.
^{124}Ag			^{124}Ag	150.	40.
$^{125}\mathrm{Ag}$			$^{125}\mathrm{Ag}$	47.	11.
^{126}Ag			^{126}Ag	8.	3.

Table 21:

^{238}U	+Be at 750) AMeV	^{238}U	+ Pb at 750) AMeV
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
$^{107}\mathrm{Cd}$			$^{107}\mathrm{Cd}$	460.	340.
$^{108}\mathrm{Cd}$			$^{108}\mathrm{Cd}$	1510.	690.
$^{109}\mathrm{Cd}$			$^{109}\mathrm{Cd}$	1740.	750.
$^{110}\mathrm{Cd}$			$^{110}\mathrm{Cd}$		
^{111}Cd			$^{111}\mathrm{Cd}$	8800.	1100.
$^{112}\mathrm{Cd}$			$^{112}\mathrm{Cd}$	11600.	1500.
$^{113}\mathrm{Cd}$			$^{113}\mathrm{Cd}$	14700.	1100.
$^{114}\mathrm{Cd}$			$^{114}\mathrm{Cd}$	18700.	2400.
$^{115}\mathrm{Cd}$			$^{115}\mathrm{Cd}$	18200.	2400.
$^{116}\mathrm{Cd}$			$^{116}\mathrm{Cd}$	14900.	1200.
$^{117}\mathrm{Cd}$			$^{117}\mathrm{Cd}$	14200.	1800.
$^{118}\mathrm{Cd}$			$^{118}\mathrm{Cd}$	13500.	3500.
$^{119}\mathrm{Cd}$			$^{119}\mathrm{Cd}$	11700.	3100.
$^{120}\mathrm{Cd}$			$^{120}\mathrm{Cd}$	14400.	3300.
$^{121}\mathrm{Cd}$			$^{121}\mathrm{Cd}$	11100.	2200.
$^{122}\mathrm{Cd}$			$^{122}\mathrm{Cd}$	9500.	1000.
$^{123}\mathrm{Cd}$			$^{123}\mathrm{Cd}$	6000.	800.
$^{124}\mathrm{Cd}$			$^{124}\mathrm{Cd}$	3500.	350.
$^{125}\mathrm{Cd}$			$^{125}\mathrm{Cd}$	2030.	260.
$^{126}\mathrm{Cd}$			$^{126}\mathrm{Cd}$	1240.	220.
$^{127}\mathrm{Cd}$			$^{127}\mathrm{Cd}$		
$^{128}\mathrm{Cd}$			$^{128}\mathrm{Cd}$	160.	20.
$^{129}\mathrm{Cd}$			$^{129}\mathrm{Cd}$	25.	6.

Table 22:

^{238}U	$^{238}U + Be$ at 750 AMeV		$^{238}U + Pb$ at 750 AMeV		
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
108 In			¹⁰⁸ In	1250.	900.
109 In			109 In	2360.	1080.
110 In			110 In	3050.	1270.
111 In			111 In		
112 In			112 In		
113 In			113 In		
114 In			114 In	10200.	800.
115 In			115 In	12000.	1000.
116 In			116 In	14600.	1900.
117 In			117 In	16500.	2100.
118 In			118 In	16100.	1200.
119 In			119 In	13500.	1100.
120 In			120 In	13100.	1700.
121 In			121 In	13400.	2600.
122 In			122 In	14600.	3100.
123 In			123 In	14900.	3000.
124 In			124 In	10500.	1200.
125 In			125 In	8900.	1000.
126 In			126 In	6900.	800.
127 In			127 In	5030.	450.
128 In			128 In	4200.	600.
129 In			129 In	3100.	500.
130 In			130 In	1150.	110.
131 In			131 In	290.	20.
132 In			132 In	32.	7.

Table 23:

^{238}U	+Be at 750) AMeV	^{238}U	+ Pb at 750	AMeV
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
111 Sn			111 Sn	1900.	900.
112 Sn			112 Sn	2300.	900.
113 Sn			^{113}Sn		
^{114}Sn			^{114}Sn		
^{115}Sn			^{115}Sn		
116 Sn			116 Sn	5600.	700.
^{117}Sn			$^{117}\mathrm{Sn}$	8100.	1100.
118 Sn			118 Sn	10600.	900.
^{119}Sn			^{119}Sn	11000.	2900.
^{120}Sn			^{120}Sn	13800.	1700.
^{121}Sn			^{121}Sn	12300.	900.
^{122}Sn			^{122}Sn	10500.	2400.
^{123}Sn			123 Sn	9300.	2300.
124 Sn			124 Sn	11200.	3200.
125 Sn			125 Sn	11100.	3900.
^{126}Sn			126 Sn	13000.	3100.
^{127}Sn			^{127}Sn	13900.	1400.
^{128}Sn			^{128}Sn	16400.	1500.
^{129}Sn			^{129}Sn	20600.	1200.
130 Sn			130 Sn	25700.	900.
131 Sn			131 Sn	23200.	1900.
^{132}Sn			^{132}Sn	15400.	1400.
133 Sn			133 Sn	2590.	110.
134 Sn			134 Sn	476.	26.
$^{135}\mathrm{Sn}$			^{135}Sn	67.	11.
$^{136}\mathrm{Sn}$			^{136}Sn	13.	5.

Table 24:

^{238}U	+Be at 750) AMeV	^{238}U	+Pb at 750	AMeV
fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$	fragment	σ (µbarn)	$\Delta \sigma \; (\mu \text{barn})$
114 Sb			^{114}Sb	1700.	800.
$^{115}\mathrm{Sb}$			$^{115}\mathrm{Sb}$		
$^{116}\mathrm{Sb}$			$^{116}\mathrm{Sb}$		
$^{117}\mathrm{Sb}$			$^{117}\mathrm{Sb}$		
$^{118}\mathrm{Sb}$			$^{118}\mathrm{Sb}$		
$^{119}\mathrm{Sb}$			$^{119}\mathrm{Sb}$		
$^{120}\mathrm{Sb}$			$^{120}\mathrm{Sb}$		
$^{121}\mathrm{Sb}$			$^{121}\mathrm{Sb}$	9700.	2500.
^{122}Sb			$^{122}\mathrm{Sb}$	11600.	1500.
$^{123}\mathrm{Sb}$			$^{123}\mathrm{Sb}$	12300.	1000.
$^{124}\mathrm{Sb}$			$^{124}\mathrm{Sb}$	11200.	900.
$^{125}\mathrm{Sb}$			$^{125}\mathrm{Sb}$	9300.	1200.
$^{126}\mathrm{Sb}$			$^{126}\mathrm{Sb}$	8300.	2700.
$^{127}\mathrm{Sb}$			$^{127}\mathrm{Sb}$	13000.	3680.
$^{128}\mathrm{Sb}$			$^{128}\mathrm{Sb}$	14100.	4100.
$^{129}\mathrm{Sb}$			$^{129}\mathrm{Sb}$	16400.	2500.
$^{130}\mathrm{Sb}$			$^{130}\mathrm{Sb}$	24100.	1800.
$^{131}\mathrm{Sb}$			$^{131}\mathrm{Sb}$	41200.	3000.
$^{132}\mathrm{Sb}$			$^{132}\mathrm{Sb}$	47500.	1900.
$^{133}\mathrm{Sb}$			$^{133}\mathrm{Sb}$	45000.	1400.
^{134}Sb			$^{134}\mathrm{Sb}$	16800.	1600.
$^{135}\mathrm{Sb}$			$^{135}\mathrm{Sb}$	5900.	470.
$^{136}\mathrm{Sb}$			$^{136}\mathrm{Sb}$	1100.	60.
$^{137}\mathrm{Sb}$			$^{137}\mathrm{Sb}$	180.	20.
$^{138}\mathrm{Sb}$			$^{138}\mathrm{Sb}$	23.	6.
$^{139}\mathrm{Sb}$			$^{139}\mathrm{Sb}$	5.	2.

Table 25:

	U	econdary hear	m rates		
	2	6 mm			
Ion	Reaction	σ_{nrod}	N_{Target}	EFRS	R(S4)
(S4 energy)		[barn]			[per proj.]
^{48}Cr	$5^8Ni + Be$	$2.4 * 10^{-3}$	$2.9 * 10^{23}$	0.22	$1.6 * 10^{-4}$
$100 { m MeV/u}$	proj.frag.		$(4.3 \ g/cm^2)$		
56_{Ni}	58 Ni + Be	$2.7 * 10^{-3}$	$4.0 * 10^{23}$	0.33	$3.6 * 10^{-4}$
$100 { m MeV/u}$	proj.frag.		$(6.0 \ g/cm^2)$		
^{190}W	$^{238}U + Be$	$3.7 * 10^{-7}$	$1.0 * 10^{23}$	0.045	$1.7 * 10^{-9}$
$100 { m MeV/u}$	proj.frag.		$(1.5 \ g/cm^2)$		
^{132}Sn	$^{238}U + Be$	$3.0 * 10^{-4}$	$2.0 * 10^{23}$	0.019	$1.1 * 10^{-6}$
$100 { m MeV/u}$	fission		$(3.0 \ g/cm^2)$		
^{132}Sn	$^{238}U + Pb$	$(1.5\pm.1)*10^{-2}$	$3.8 * 10^{21}$	0.019	$1.1 * 10^{-6}$
$100 { m MeV/u}$	fission		$(1.3 g/cm^2)$		
56 Ni	$^{58}Ni + Be$	$2.7 * 10^{-3}$	$4.0 * 10^{23}$	0.17	$1.6 * 10^{-4}$
$10 { m MeV/u}$	proj.frag.		$(6.0 \ g/cm^2)$		
^{190}W	$^{238}U + Be$	$3.7 * 10^{-7}$	$1.0 * 10^{23}$	0.035	$1.3 * 10^{-9}$
$10 { m MeV/u}$	proj.frag.		$(1.5 \ g/cm^2)$		

$\mathbf{7}$

Appendix-4: www.gsi.de/~wolle/EB_at_GSI/FRS-WORKING/IMAGES/s4_setup.jpg

9 Appendix-6:

 $www.gsi.de/{\sim}wolle/EB_at_GSI/FRS-WORKING/IMAGES/ang_width.gif$

10 Appendix-7:

www.gsi.de/~wolle/EB_at_GSI/FRS-WORKING/IMAGES/coulex_cross.gif

