Hector in Rising

8 Large (14 cm x 18 cm) BaF₂

Energy resolution (⁶⁰Co) » 11 % Timing ~ 1 ns Relative F.E.P. efficiency (15 MeV) ~ 10% Gain Monitored by LED

The Fast vs Slow spectra rejects pile-up and might select interacting particles

1st Configuration

Minimum distance to target and maximum backward angle

Ring of 6 BaF₂ at 22.5 cm from target at $\theta = 140^{\circ}$

E (MeV)	5	10	15	20
ε	1.6 %	1.1 %	0.9 %	0.6 %

2nd Configuration

Ring of 8 at same angle and at minimum target distance

Ring of 8 BaF₂ at 30 cm from target at $\theta = 142^{\circ}$

E (MeV)	5	10	15	20
ε	1.3 %	0.9 %	0.7 %	0.6 %

Electronic

The Front End electronic of Hector needs one rack and the ACQ part is composed by one VME ADC and one TDC (also QDC could be used if needed)

Hector run (from half January) with Euroball by coupling the VME ADC and TDC to the ATTIC module of the neutron wall

Hector and Euroball coupling scheme

Beamline support

Atomic Background Problem

Each BaF_2 crystal has a front 3 mm lead absorber

Absorption factor					
50 KeV	100 KeV	200 KeV			
Total	Total	20			

