The **RISING** Project

Technical Details for Fast Beam Proposals

RISING Collaboration

January 2003

P. Mayet et al.: Shape evolution in light n-rich nuclei

Nucleus of i	nterest:	³⁴ Mg (2 step	fragme	entation -	+ lifetir	ne)		
Primary bea Production t	im: arget:	⁴⁸ Ca ⁹ Be	10 ⁹ pp 4 g/c	os m²	400 Me	V/u			d/R=0.4
First step ⁴⁸ Secondary b Yield of ³⁶ Si Charge state	Ca → ³⁶ Si: peam: / incident ⁴⁸ Ca es after produc	³⁶ Si :: ction tar	get:		312 Me fully stri	V/u pped	1.2 ·	10 ⁻⁵	(6.7 · 10 ⁻² mb)
Al degrader Al degrader Charge stat	at S1: at S2: es after degrac	8500 r lers:	- ng/cm ²	2	- 171 Me fully stri	eV/u pped		}	d/R= 0.85
Energy at re Charge state	eaction target (es at reaction t	S4): arget (\$	S4):		160 Me fully stri	eV/u pped			
Slits: S1 ± 10cm (S2 ± 10cm (S3 ± 10cm ((open) (open) (open)								
Transmissic At S1 after s At S2 after s Total at S4:	on of ³⁶ Si: slits: slits: (σ _x (³⁶ Si) = 1.0	6 cm)		72 % 16 % 15 %	١	rield /	incid 8.7 · 1.9 · 1.8 ·	ent pa 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶	rticle:
Yield of ³⁶ Si	at S4 / all frag	ments:		0.5					
	Yield of ³⁶ Si a	at S4 / i	nciden	t ⁴⁸ Ca:			1.8 ·	10 ⁻⁶	(1800 pps)
Second step	o ³⁶ Si → ³⁴ Mg:								
Reaction target at S4: 27 Al 1.2 g/cm ² d/R= 0.4									
Energy of ³⁴	Energy of ³⁴ Mg behind the reaction target: 135 MeV/u								
Yield of ³⁴ M Yield of ³⁴ M Yield of ³⁴ M	g / incident ³⁶ S g / all nuclei: g / isotopes of	i: Mg:				2.7 · 1 1 · 10 ⁻¹ 9 · 10 ⁻¹	0 ⁻⁵ (1 ³ (wit ₃	.0 mb hout ³	, 5 · 10 ⁻² pps) ⁶ Si)

Estimated py rate for 34 Mg (3% y efficiency, 100% state population): 130 per day

Some additional information

Relative yield of Mg isotopes:

³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg
12	7	4	2	1

Slits:

S1 ± 10cm S2 ± 10cm S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident 48 Ca after S1 slits: $1 \cdot 10^{-3}$ ($1 \cdot 10^{6}$ pps)Yield of all fragments / incident 48 Ca before SC21: $3 \cdot 10^{-4}$ ($3 \cdot 10^{5}$ pps)Yield of all fragments / incident 48 Ca before MUSIC at S4: $4 \cdot 10^{-6}$ ($4 \cdot 10^{3}$ pps)Yield of all fragments / incident 48 Ca behind the reaction target: $3 \cdot 10^{-6}$ ($3 \cdot 10^{3}$ pps)

 $B\rho(D1) = 7.2083 \text{ Tm}$ $B\rho(D2) = 7.2084 \text{ Tm}$ $B\rho(D3) = 5.0638 \text{ Tm}$ $B\rho(D4) = 5.0677 \text{ Tm}$

M. Bentley et al.:

Isospin Symmetry and Coulomb Effects Towards the Proton Drip Line

Nucleus of i	nterest:	⁴⁵ Cr (2	2 step f	ragme	ntation)		
Primary bea Production t	im: arget:	⁵⁸ Ni ⁹ Be	10 ⁹ pp 6.3 g/o	os cm²	600 MeV/u		d/R=0.45
<u>First step</u> ⁵⁸ Secondary b Yield of ⁴⁶ Cr Charge state	<u>Ni → ⁴⁶Cr:</u> beam: ⁻ / incident ⁵⁸ Ni es after produc	⁴⁶ Cr : ction ta	rget:		410 MeV/u fully st	3.1 [.] 10 ⁻⁶ (0 tripped).014 mb)
Al degrader Al degrader Charge state	at S1: at S2: es after degrad	5800 i ders:	- mg/cm ²	2	- 190 MeV/u fully stripped	}	d/R= 0.6
Energy at re Charge state	eaction target (es at reaction t	S4): arget (S4):		164 MeV/u fully stripped		
Slits: S1 ± 10cm (S2 ± 10cm (S3 ± 10cm (open) open) open)						
Transmissio At S1 after s At S2 after s Total at S4:	on of ⁴⁶ Cr: Blits: Blits: $(\sigma_x)^{46}Cr) = 1.$	9 cm)		91 % 46 % 32 %	Yield /	⁷ incident pa 2.9 [.] 10 ⁻⁶ 1.5 [.] 10 ⁻⁶ 1.0 [.] 10 ⁻⁶	rticle:
Yield of ⁴⁶ Cr	⁺ at S4 / all fraç	gments	:	0.2			
	Yield of ⁴⁶ Cr	at S4/ i	ncident	t ⁵⁸ Ni:		1.0 [.] 10 ⁻⁶	(1000 pps)
Second ster	0^{46} Cr $\rightarrow {}^{45}$ Cr:						
Reaction tar	get at S4:	⁹ Be	700 m	g/cm ²			d/R= 0.3
Energy of 45	Cr behind the	reactio	n targe	t:	123 MeV/u		
Yield of ⁴⁵ Cr Yield of ⁴⁵ Cr Yield of ⁴⁵ Cr	/ incident ⁴⁶ Cr: / all nuclei: / isotopes of (Cr:				1.7 · 10 ⁻⁴ (3 4.4 · 10 ⁻³ (w 0.98 (witho	3.55 mb, 0.17 pps) /ithout ⁴⁶ Cr) ut ⁴⁶ Cr)
		45 0 (0			1000/		

Estimated py rate for 45 Cr (3% y efficiency, 100% state population): 18 per hour

Some additional information

Nucleus of interest	Intermediate fragment	Yield of intermediate fragment at S4 / incident ⁵⁸ Ni	Beam intensity of ⁵⁸ Ni (limited by rate on detectors)	Estimated pγ rate (3% γ efficiency, 100% state population)
⁴⁵ Cr	⁴⁶ Cr	1 [.] 10 ⁻⁶	1 [.] 10 ⁹ pps	18 / h
⁴⁵ Sc	⁴⁶ Ti	8 [.] 10 ⁻⁴	2.5 [.] 10 ⁶ pps	440 / h
⁵³ Ni	⁵⁴ Ni	8 [.] 10 ⁻⁷	1 [.] 10 ⁹ pps	10 / h
⁵³ Mn	⁵⁴ Fe	3 [.] 10 ⁻³	6.3 [.] 10 ⁵ pps	580 / h

Slits: S1 ± 10cm S2 ± 10cm S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident 58 Ni after S1 slits: $3.2 \cdot 10^{-3} (3.2 \cdot 10^6 \text{ pps})$ Yield of all fragments / incident 58 Ni before SC21: $2.9 \cdot 10^{-3} (2.9 \cdot 10^6 \text{ pps})$ Yield of all fragments / incident 58 Ni before MUSIC at S4: $5.4 \cdot 10^{-6} (5.4 \cdot 10^3 \text{ pps})$ Yield of all fragments / incident 58 Ni behind the reaction target: $5.0 \cdot 10^{-6} (5.0 \cdot 10^3 \text{ pps})$

 $B\rho(D1) = 6.1711 \text{ Tm}$ $B\rho(D2) = 6.1717 \text{ Tm}$ $B\rho(D3) = 3.9892 \text{ Tm}$ $B\rho(D4) = 3.9899 \text{ Tm}$

Experiment No. 3

A. Bracco et al.

Gamma-decay of the GDR in the exotic nucleus ⁶⁸Ni via Coulomb excitation

Nucleus of interest: Primary beam : Production target:	⁶⁸ Ni (⁸⁶ Kr ⁹ Be	$({ m GDR} { m via} { m Coulex} \ 10^{10} { m pps} \ 4 { m g/cm^2}$	x) 700 MeV/u	$\frac{d}{R_t} = 0.26$
First stage ${}^{86}\text{Kr} \rightarrow {}^{68}\text{Ni:}$				
Secondary beam: Yield of ⁶⁸ Ni/incident ⁸⁶ Kr	⁶⁸ Ni	$9.5 \cdot 10^{-6}$	$584.0~{\rm MeV/u}$	0.058 mb (EPAX2)
Charge states after prod. target			fully stripped	()
Al degrader at S1 Al degrader at S2 Charge states after degrader		$6167.8 \mathrm{~mg/cm}$	² 415.3 MeV/u fully stripped	$\frac{d}{R} = 0.41$
Energy at reaction target (S4) Charge states at target			400.2 MeV/u fully stripped	
Slits : $S1 = \pm 1.5 \text{ cm}$ $S2 = \pm 6 \text{ cm}$ $S3 = \pm 1.6 \text{ cm}$				
Transmission of ⁶⁸ Ni:			Yield/in	cident particle:
At S1, after slits		40.1%		$3.8 \cdot 10^{-6}$ 2.5 10 ⁻⁶
At reaction target $(\sigma_x(^{68}\text{Ni}) = 0.70)$	cm)	$20.2 \ \%$ $24.5 \ \%$		$2.3 \cdot 10^{-6}$
Yield of ⁶⁸ Ni at S4/all fragments:		0.22		
Yield of 68 Ni at S4/incident 86 Kr		$2.3 \cdot 10^{-6}$	$(2.3 \cdot 10^4 \text{ pps})$	
Second stage $^{68}Ni \rightarrow ^{68}Ni^*$:	_			
Reaction target at S4 Energy of 68 Ni behind the reaction	²⁰⁸ Pb	2 g/cm^2	400.3 MeV/u 262.0 MeV/u	$\frac{d}{R} = 0.14$
Yield of ⁶⁸ Ni*(Coulex)/incident ⁶⁸ N	Vi	$\begin{array}{c} 3.5 \cdot 10^{-3} \\ 8.7 \cdot 10^{-4} \end{array} (1)$	region of pygmy:	600 mb, 81 pps) 150 mb, 20 pps)
Estimated $p\gamma$ rate in BaF_2 detect	ors(5 -	· 13 MeV Energy	, (1.1 % γ eff. at	$10 \text{ MeV})): 64 \text{ hr.}^{-1}$
Estimated $p\gamma$ rate in Ge detector	rs (15 \cdot	- 17 MeV Energy	v, (0.4 % γ eff. at	$15 \text{ MeV})) : 6 \text{ hr.}^{-1}$

Slits : $S1 = \pm 1.5 \text{ cm}$ $S2 = \pm 6 \text{ cm}$ $S3 = \pm 1.6 \text{ cm}$

Reaction target = ± 3.5 cm (max.)

 $\begin{array}{l} {\rm B}\rho({\rm D1}) = 9.6691 \ {\rm Tm} \\ {\rm B}\rho({\rm D2}) = 9.6746 \ {\rm Tm} \\ {\rm B}\rho({\rm D3}) = 7.8722 \ {\rm Tm} \\ {\rm B}\rho({\rm D4}) = 7.8716 \ {\rm Tm} \end{array}$

Figure 1: Position spectrum at S4 for $^{68}\mathrm{Ni}$ setting

Figure 2: Time-of-flight vs Position plot for $^{68}\mathrm{Ni}$ setting

H. Grawe et al.: <u>Relativistic Coulex in N=28-34 and N=40-50 nuclei</u>

Nucleus of i	nterest:	⁵⁰ Ca								
Primary bea Production t	m: arget:	⁸² Se ⁹ Be	10 ⁹ pr 2 g/cn	n²	400 MeV/u			d/R=0).3	
First step ⁸² Secondary b Yield of ⁵⁰ Ca Charge state	<u>Se→ ⁵⁰Ca:</u> beam: a / incident par es after produc	⁵⁰ Ca ticle ction ta	rget:		330 MeV/u fully st	5 [.] 10⁻ ripped	⁷ (4.8	10 ⁻³ ml	0)	
Al degrader Al degrader Charge state	at S1: at S2: es after degrac	7200 ders:	- mg/cm	2	- 130 MeV/u fully stripped		}	d/R=	0.78	
Energy at re Charge state	action target (es at reaction t	S4): arget (S4):		108 MeV/u fully stripped					
Slits: S1 ± 10cm (S2 ± 10cm (S3 ± 10cm (open) open) open)									
Transmissio At S1 after s At S2 after s At reaction	n of ⁵⁰ Ca: lits: lits: target:(ơ _x (⁵⁰ Ca	a) = 2 c	m)	67 % 25 % 14 %	Yield /	incide 3.5 [·] 1 1.3 [·] 1 7.4 [·] 1	nt parl 0 ⁻⁷ 0 ⁻⁷ 0 ⁻⁸	ticle:		
Yield of ⁵⁰ Ca	a at S4 / all fra	gment	S:	0.19						
	Yield of ⁵⁰ Ca	at S4/	incider	nt partio	cle		7.4 · <i>′</i>	10 ⁻⁸	(74 pps))
Second step	o ⁵⁰ Ca → ⁵⁰ Ca	<u>(2⁺):</u>								
Reaction tar	get at S4:	²⁰⁸ Pb		1000	mg/cm ²			d/R=	0.5	
Energy of 50	Ca behind the	reactio	on targe	et:	78 MeV/u					
Yield of ⁵⁰ Ca Yield of ⁵⁰ Ca	$(2^+) / incident^+$ $a(2^+) / isotopes$	⁵⁰ Ca: of Ca	5 · 1 (produ	0 ⁻⁴ (25 cts of ⁵	0 mb, 0.04 pp: ⁰ Ca+ ²⁰⁸ Pb rea	s) ction):	0.43			

Estimated py rate for ${}^{50}Ca(2^{+})$ (3% y efficiency at 1.3 MeV): 4 /h

Slits: S1 ± 10cm S2 ± 10cm S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: $5 \cdot 10^{-5}$ (5 10^{4} pps) Yield of all fragments / incident particle before MUSIC at S4: $4 \cdot 10^{-7}$ (4 10^{2} pps)

 $B\rho(D1) = 7.0840 \text{ Tm}$ $B\rho(D2) = 7.0888 \text{ Tm}$ $B\rho(D3) = 4.2318 \text{ Tm}$ $B\rho(D4) = 4.2313 \text{ Tm}$

H. Grawe et al.: <u>Relativistic Coulex in N=28-34 and N=40-50 nuclei</u>

Nucleus of ir	nterest:	⁶⁶ Fe						
Primary bear Production ta	m: arget:	⁸² Se ⁹ Be	10 ⁹ pps 2 g/cm ²		400	MeV/u		d/R=0.3
First step ⁸² Secondary b Yield of ⁶⁶ Fe Charge state	<u>Se→ ⁶⁶Fe:</u> beam: / incident part es after produc	⁶⁶ Fe icle tion ta	rget:		331	MeV/u fully st	3 [.] 10 ⁻⁷ (3.0 ripped) 10 ⁻³ mb)
Al degrader Al degrader Charge state	at S1: at S2: es after degrac	5000 i lers:	- mg/cm ²		154 fully	- MeV/u stripped		d/R=0.70
Energy at re Charge state	action target (es at reaction t	S4): arget (S4):		130 fully	MeV/u stripped		
Slits: S1 ± 10cm (S2 ± 10cm (S3 ± 10cm (open) open) open)							
Transmission At S1 after s At S2 after s At reaction t	n of ⁶⁶ Fe: lits: lits: target:(ơ _x (⁶⁶ Fe) = 1.7	cm) 3	94 % 17 % 34 %		Yield /	incident pa 3.0 [.] 10 ⁻⁷ 1.5 [.] 10 ⁻⁷ 1.1 [.] 10 ⁻⁷	rticle:
Yield of ⁶⁶ Fe	at S4 / all frag	gments	s: C).23				
	Yield of ⁶⁶ Fe	at S4/	incident	partic	le		1.1 ·	10 ⁻⁷ (110 pps)
Second step	66 Fe $\rightarrow ^{66}$ Fe(2 ⁺):						

Reaction target at S4: 208 Pb1000 mg/cm2d/R= 0.4Energy of 50 Ca behind the reaction target:96 MeV/u

Yield of⁶⁶Fe(2⁺) behind the reaction target / incident ⁶⁶Fe: $1.7 \cdot 10^{-3}$ (580 mb, 0.19 pps) Yield of ⁶⁶Fe / isotopes of Fe (products of ⁶⁶Fe+²⁰⁸Pb reaction): 0.55

Estimated py rate for 66 Fe (3% y efficiency): 21 /h

H. Grawe et al.: <u>Relativistic Coulex in N=28-34 and N=40-50 nuclei</u>

Nucleus of i	nterest:	⁸² Ge							
Primary bea Production t	ım: arget:	⁸⁶ Kr ⁹ Be	10 ⁹ pp 2 g/cm	ท ร 1 ²	450	MeV/u		d/R=0).25
First step ⁸⁶ Secondary b Yield of ⁸² Ge Charge state	<u>Kr→ ⁸²Ge:</u> beam: e / incident par es after produc	⁸² Ge ticle ction tai	rget:		380	MeV/u 1 [.] 1 fully stripp	0 ⁻⁷ (1 10 ⁻ ed	⁻³ mb)	
Al degrader Al degrader Charge state	at S1: at S2: es after degrac	5375 r lers:	- ng/cm²	2	162 fully	- MeV/u stripped	}	d/R=	0.73
Energy at re Charge state	eaction target (es at reaction t	S4): arget (S4):		133 fully	MeV/u stripped			
Slits: S1 ± 10cm (S2 ± 10cm (S3 ± 10cm (open) open) open)								
Transmissio At S1 after s At S2 after s At reaction	n of ⁸² Ge: slits: slits: target:(σ _x (⁸² Ge	e) = 1.6	cm)	100 % 68 % 59 %		Yield / inci 1.0 7.2 6.2	dent part [•] 10 ⁻⁷ • 10 ⁻⁸ • 10 ⁻⁸	icle:	
Yield of ⁸² Ge	e at S4 / all fra	gments	6:	0.15					
[Yield of ⁸² Ge	at S4/	inciden	it partio	cle		6.2 [.] 1	0 ⁻⁸	(62 pps)
Second step	0^{82} Ge $\rightarrow {}^{82}$ Ge	<u>(2⁺):</u>							
Reaction tar	get at S4:	²⁰⁸ Pb		200 n	ng/cm	1 ²		d/R=	0.44
Energy of ⁸²	Ge behind the	reactic	on targe	et:	91	MeV/u			
Yield of ⁸² Ge Yield of ⁸² Ge	e(2 ⁺) / incident [*] e(2 ⁺) / isotopes	⁸² Ge: of Ge	8 · 10 (produ) ⁻⁴ (29 cts of ⁸	0 mb ² Ge+	, 0.05 pps) ²⁰⁸ Pb reactio	n): 0.38		

Estimated py rate for ${}^{82}\text{Ge}(2^+)$ (3% y efficiency at 1.3 MeV): 5 /h

Slits: S1 ± 10cm S2 ± 10cm S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: $5 \cdot 10^{-6}$ (5 10^{3} pps) Yield of all fragments / incident particle before MUSIC at S4: $4 \cdot 10^{-7}$ (4 10^{2} pps)

 $B\rho(D1) = 7.8910 \text{ Tm}$ $B\rho(D2) = 7.8910 \text{ Tm}$ $B\rho(D3) = 4.9000 \text{ Tm}$ $B\rho(D4) = 4.9000 \text{ Tm}$

D. Tonev et Investigation relativistic	D. Tonev et al.: Investigation of the origin of mixed-symmetry states using relativistic COULEX of N=52 isotones									
Nucleus of i	nterest:	⁸⁸ Kr (fi	ission,	Coulon	nb excit	ation)				
Primary bea Production	am: target:	²³⁸ U ⁹ Be	10 ⁹ pp 1416 i		d/R=0.2					
First step $^{238}U \rightarrow ^{88}Kr$ 744 MeV/uSecondary beam: ^{88}Kr 744 MeV/uYield of ^{88}Kr / incident ^{238}U : $2.1 \cdot 10^{-3}$ (20)Charge states after production target:fully stripped								⁻³ (26	mb)	
Al degrader Al degrader Charge stat	at S1: at S2: es after degrac	7500 r 8000 r lers:	ng/cm ² ng/cm ²	2 2	173 M fully str	eV/u ripped		}	d/R= 0.9	
Energy at reaction target (S4):140 MeV/uCharge states at reaction target (S4):fully stripped										
Slits: S1 ± 10cm S2 ± 10cm S3 ± 10cm	(open) (open) (open)									
Transmissic At S1 after of At S2 after of Total at S4:	on of ⁸⁸ Kr: degrader: degrader: (σ _x (⁸⁸ Kr) = 2.	1 cm)		3.8 % 0.39 % 0.27 %	, 0 0	Yield /	inciden 8.0 · 10 8.2 · 10 5.7 · 10	t partio - ⁵ - ⁶	cle:	
Yield of ⁸⁸ Ki	r at S4 / all frag	gments	:	0.36						
	Yield of ⁸⁸ Kr a	at S4/ ii	nciden	t ²³⁸ U:			5.7 · 10	-6	(5700 pps)	
Second step	o ⁸⁸ Kr → ⁸⁸ Kr(2	<u>2⁺):</u>								
Reaction ta	rget at S4:	²⁰⁸ Pb		400 m	g/cm ²				d/R= 0.2	
Energy of ⁸⁸	Kr behind the	reactior	n targe	t:	122 N	/leV/u				
Yield of ⁸⁸ Kı Yield of ⁸⁸ Kı	$r(2_{1}^{+}) / incident$ $r(2_{2}^{+}) / incident$	⁸⁸ Kr: ⁸⁸ Kr:				3.2 [.] 1 8.0 [.] 1	0 ⁻⁴ (200 0 ⁻⁵ (50) mb, 1 mb, 0.	1.8 pps) 46 pps)	
Estima	ted pγ rate (3%	όγeffic	iency)	: fc fc	or ⁸⁸ Kr(2 or ⁸⁸ Kr(2	2 ⁺ 1) 19 2 ⁺ 2) 5	4 per ho 0 per ho	our our		

Some additional information

The fission cross section for ⁸⁶Se is 0.910 mb compared to 26 mb for ⁸⁸Kr.

Slits: S1 ± 10cm S2 ± 10cm S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident 238 U after S1 degrader: $6.1 \cdot 10^{-3} (6.1 \cdot 10^{6} \text{ pps})$ Yield of all fragments / incident 238 U before SC21: $8.8 \cdot 10^{-4} (8.8 \cdot 10^{5} \text{ pps})$ Yield of all fragments / incident 238 U before MUSIC at S4: $2.6 \cdot 10^{-5} (2.6 \cdot 10^{4} \text{ pps})$ Yield of all fragments / incident 238 U behind the reaction target: $2.5 \cdot 10^{-5} (2.5 \cdot 10^{4} \text{ pps})$

 $B\rho(D1) = 10.648 \text{ Tm}$ $B\rho(D2) = 8.9225 \text{ Tm}$ $B\rho(D3) = 4.8265 \text{ Tm}$ $B\rho(D4) = 4.8251 \text{ Tm}$

C. Fahlander et al.: **Relativistic Coulomb excitation of nuclei near** ¹⁰⁰Sn

Nucleus of interest:	¹⁰⁴ Sn								
Primary beam: Production target:	¹²⁴ Xe ⁹ Be	10 ⁹ pp 4 g/cm	ทร 1 ²	550 MeV/u			d/R=0).56	
<u>First step ¹²⁴Xe→ ¹⁰⁴Sn:</u> Secondary beam: Yield of ¹⁰⁴ Sn / incident par Charge states after produc	¹⁰⁴ Sn rticle tion targ	get:		309 MeV/u fully st	6.8 [.] 10 [.] tripped	⁻⁷ (4.5	10 ⁻³ m	ıb)	
Al degrader at S1: Al degrader at S2: Charge states after degrad	1560 m lers:	- ng/cm²	2	- 155 MeV/u fully stripped		}	d/R=	0.55	
Energy at reaction target (Charge states at reaction t	S4): arget (S	64):		95 MeV/u fully stripped					
Slits: S1 ± 3cm S2 ± 10cm (open) S3 (-2;2.5)									
Transmission of ¹⁰⁴ Sn: At S1 after slits: At S2 after slits: At reaction target:(σ _x (¹⁰⁴ Sn) = 1.7	cm)	87 % 73 % 55 %	Yield /	' inciden 6.0 [·] 10 5.0 [·] 10 3.7 [·] 10	t parti ⁻⁷ ⁻⁷	cle:		
Yield of ¹⁰⁴ Sn at S4 / all fra	gments	:	0.06						
Yield of ¹⁰⁴ Sn	at S4/	incide	nt parti	cle	3	8.7 [.] 1	0 ⁻⁷	(370 pps	6)
Canadatan 1040a 1040	• (Q ⁺).								
Second step $-Sn \rightarrow -S$	<u>n(2):</u>			. 2					
Reaction target at S4:	²⁰⁰ Pb		200 n	ng/cm²			d/R=	0.26	
Energy of ¹⁰⁴ Sn behind the	reactio	n targ	et:	77 MeV/u					
Yield of ¹⁰⁴ Sn(2 ⁺) / incident Yield of ¹⁰⁴ Sn(2 ⁺) / isotopes	: ¹⁰⁴ Sn: s of Sn ((produ	cts of	¹⁰⁴ Sn+ ²⁰⁸ Pb re	8 · 10 [·] eaction):	⁵ (20 0.92	0 mb, 2	0.03 pps))

Estimated py rate for 104 Sn(2⁺) (3% y efficiency at 1.3 MeV): 3 /h

Slits: S1 ± 3 cm S2 ± 10 cm S3 (-2;2.5) cm

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: $1.5 \cdot 10^{-4} (1.5 \ 10^{5} \text{ pps})$ Yield of all fragments / incident particle before MUSIC at S4: $6.4 \cdot 10^{-6} (6.4 \ 10^{3} \text{ pps})$

Yield with slits open (all frag./ip before SC21): $1.7 \cdot 10^{-4} (1.7 \cdot 10^5)$ Yield with slits open (all frag./ip before MUSIC at S4): $1.2 \cdot 10^{-5} (1.2 \cdot 10^4)$ Transmission of 104 Sn with open slits:63%

 $B\rho(D1) = 5.6856 \text{ Tm}$ $B\rho(D2) = 5.6875 \text{ Tm}$ $B\rho(D3) = 3.8845 \text{ Tm}$ $B\rho(D4) = 3.8842 \text{ Tm}$

C. Fahlander et al.: **Relativistic Coulomb excitation of nuclei near** ¹⁰⁰Sn

Nucleus	of interest:	¹⁰⁸ Sn						
Primary Producti	beam: on target:	¹²⁴ Xe ⁹ Be	10 ⁹ pr 4 g/cn	os n²	600 MeV/u			d/R=0.5
First step Seconda Yield of Charge s	o ¹²⁴ Xe→ ¹⁰⁸ Sn: ary beam: ¹⁰⁸ Sn / incident pa states after produc	¹⁰⁸ Sn rticle ction tai	rget:		377 MeV/u fully s	5.0 10⁻⁴ tripped	⁴ (3 ml	D)
Al degra Al degra Charge s	der at S1: der at S2: states after degrac	ו 1770 930 ו ders:	ng/cm ng/cm	2 2	263 MeV/u 158 MeV/u fully stripped		}	d/R= 0.67
Energy a Charge s	at reaction target (states at reaction t	S4): arget (S4):		101 MeV/u fully stripped			
Slits: S1 ± 0.4 S2 ± 3.0 S3 ± 10	cm cm cm (open)							
Transmis At S1 aft At S2 aft At reaction	ssion of ¹⁰⁸ Sn: er slits: er slits: on target:(σ _x (¹⁰⁸ Sr	n) = 1.7	cm)	24 % 9 % 8 %	Yield	/ inciden 1.2 · 10 4.4 · 10 4.0 · 10	t parti) ⁻⁴) ⁻⁵	cle:
Yield of	¹⁰⁸ Sn at S4 / all fra	igment	S:	0.57				
	Yield of ¹⁰⁸ Sn at	S4/ inc	ident p	oarticle		4.0	· 10 ⁻⁵	(4 10 ⁴ pps)
Second	step 108 Sn \rightarrow 108 S	<u>n(2⁺):</u>						
Reactior	target at S4:	²⁰⁸ Pb		200 r	ng/cm ²			d/R= 0.23
Energy o	of ¹⁰⁸ Sn behind the	e reacti	on targ	jet:	85 MeV/u			
Yield of Yield of	¹⁰⁸ Sn(2⁺) / inciden ¹⁰⁸ Sn(2⁺) / isotope	t ¹⁰⁸ Sn: s of Sn	(produ	ucts of	¹⁰⁸ Sn+ ²⁰⁸ Pb re	1 · 10 [·] eaction):	^{.4} (20 0.87	0 mb, 4.6 pps) ,

Estimated py rate for 108 Sn(2⁺) (3% y efficiency at 1.3 MeV): 490 /h

Slits: S1 \pm 0.4 cm S2 \pm 3.0 cm S3 \pm 10 cm (open)

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: $5 \cdot 10^{-4} (5 \ 10^5 \text{ pps})$ Yield of all fragments / incident particle before MUSIC at S4: $7 \cdot 10^{-5} (7 \ 10^4 \text{ pps})$

Yield with slits open (all frag./ip before SC21): $6 \cdot 10^{-3} (6 \cdot 10^{6})$ Yield with slits open (all frag./ip before MUSIC at S4): $10^{-3} (10^{6})$ Transmission of 108 Sn with open slits:40%

 $B\rho(D1) = 6.6177 \text{ Tm}$ $B\rho(D2) = 5.3945 \text{ Tm}$ $B\rho(D3) = 4.0742 \text{ Tm}$ $B\rho(D4) = 4.0742 \text{ Tm}$

Experiment No. 7

G. de Angelis et al.

Nuclear magicity at Z \sim 50 N \sim 82 investigated through knock-out reaction of $^{132}{\rm Sn}$

Nucleus of interest: Primary beam : Production target:	$^{132}_{238}Sn ($ ^{238}U ^{208}Pb	Fission fragment 10^8 pps 1.5 g/cm ²	, knock-out) 700 MeV/u	$\frac{d}{R_t} = 0.15$
First stage $^{238}U \rightarrow ^{132}Sn:$				
Secondary beam: Yield of ¹³² Sn/incident ²³⁸ U Charge states after prod. target	$^{132}\mathrm{Sn}$	$6.8 \cdot 10^{-5}$	596.5 MeV/u fully stripped	15.4 mb (lit.)
Al degrader at S1 Al degrader at S2 Charge states after degrader		$6183.9~\mathrm{mg/cm^2}$	300.5 MeV/u fully stripped	$\frac{d}{R} = 0.65$
Energy at reaction target (S4) Charge states at target			270.9 MeV/u fully stripped	
Slits : $S1 = \pm 2 \text{ cm}$ $S2 = \pm 3 \text{ cm}$ $S3 = \pm 10 \text{ cm}$				
Transmission of ¹³² Sn: At S1, after slits At S2, after slits At reaction target($\sigma_x(^{132}Sn) = 0.92$	cm)	5.9 % 1.6 % 1.2 %	Yield/inci	dent particle: $4.2 \cdot 10^{-6}$ $1.1 \cdot 10^{-6}$ $8.8 \cdot 10^{-7}$
Yield of 132 Sn at S4/all fragments:		0.05 (transmissio	on only)	
Yield of 132 Sn at S4/incident 238 U	8.8	$8 \cdot 10^{-7}$ (8.8)	$8 \cdot 10^1 \text{ pps})$	
Second stage $^{132}Sn \rightarrow ^{131}Sn$	*:			
Reaction target at S4 Energy of ¹³¹ Sn behind the reaction Yield of ¹³¹ Sn/incident ¹³² Sn Yield of ¹³¹ Sn*(l=2, $3s_{\frac{1}{2}}$)/incident ¹³	⁹ Be target: ³² Sn	1 g/cm ² 6.7 \cdot 10 ⁻³ 6.0 \cdot 10 ⁻⁴	270.8 MeV/u 264.8 MeV/u	$\frac{d}{R} = 0.34$ 100 mb, 0.59 pps 9 mb, 0.05 pps
Estimated $p\gamma$ rate fo	$r^{131}Sn$ ($(2.7 \% \gamma \text{ eff. at } 1)$.3 MeV)) : 57 hr	1

Estimated p γ rate for ¹³¹Sn (l=2, 3s_{1/2}) (2.7 % γ eff. at 1.3 MeV)) : 10 hr.

Slits : $S1 = \pm 2.0 \text{ cm}$ $S2 = \pm 3.0 \text{ cm}$ $S3 = \pm 10.0 \text{ cm}$

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : $5.1 \cdot 10^{-4}$ ($5.1 \cdot 10^{6}$)Yield of all fragments / incident particle before MUSIC at S4 : $1.0 \cdot 10^{-5}$ ($1.0 \cdot 10^{5}$)

 $B\rho(D1) = 10.6867 \text{ Tm}$ $B\rho(D2) = 10.6839 \text{ Tm}$ $B\rho(D3) = 7.0973 \text{ Tm}$ $B\rho(D4) = 7.0974 \text{ Tm}$

Figure 1: Position spectrum at S4 for ¹³²Sn setting (only transmission).

Figure 2: Mass vs z plot for $^{132}\mathrm{Sn}$ setting (only transmission).

Experiment No. 8

A. Maj et al.

$\frac{\text{Coulomb excitation at intermediate energies -Angular distribution and}}{\text{particle - }\gamma \text{ angular correlation measurement}}$

Nucleus of interest: Primary beam : Production target:	$^{132}_{132}$ Xe ($^{132}_{132}$ Xe None	$\begin{array}{c} \text{Coulex} \\ 10^5 \text{ pps} \end{array}$	$160 { m MeV/u}$	
$\frac{\text{First stage}}{132} \text{Xe} \rightarrow \frac{132}{32} \text{Xe}$:			
Secondary beam: Yield of ¹³² Xe/incident ¹³² Xe	¹³² Xe		158.8 MeV/u	
Unarge states after prod. target			Not applicable	
Al degrader at S1 Al degrader at S2 Charge states after degrader			none none not applicable	
Energy at reaction target (S4) Charge states after target			105.3 MeV/u fully stripped	
Slits : $S1 = \pm 10 \text{ cm}$ $S2 = \pm 10 \text{ cm}$ $S3 = \pm 10 \text{ cm}$				
Transmission of ⁶⁸ Ni: At S1, after slits At S2, after slits At reaction target($\sigma_x(^{132}\text{Xe}) = 1.3$	l cm)	$\begin{array}{c} 99.9 \ \% \\ 99.9 \ \% \\ 99.5 \ \% \end{array}$	Yield/incide $\sigma_a = 5.0 \text{ mrad}$ $\sigma_E = 0.12 \text{ MeV/u}$	nt particle: 10^{-5} 10^{-5} 10^{-5}
Yield of 132 Xe at S4/incident 132 X	Ke	~ 1	(10^5 pps)	
Second stage $^{132}Xe \rightarrow ^{132}Xe$	Ke*:			
Reaction target at S4 Energy of 132 Xe behind the reaction Yield of 132 Xe* (2^+) /incident 132 Xe	²⁰⁸ Pb on targe	50 mg/cm^2 t: $7.2 \cdot 10^{-5}$	105.3 MeV/u 97.2 MeV/u	$\frac{d}{R} = 0.05$ (500 mb, 7 pps
Estimated $p\gamma$ rate f	or $^{132}X\epsilon$	e (2.7 % γ eff.	at 1.3 MeV) : 703 h	$\mathrm{nr.}^{-1}$

)

Slits : $S1 = \pm 10 \text{ cm}$ $S2 = \pm 10 \text{ cm}$ $S3 = \pm 10 \text{ cm}$

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : $1 (1.10^5)$ Yield of all fragments / incident particle before MUSIC at S4 : $1(1.0.10^5)$

 $B\rho(D1) = 4.6174 \text{ Tm}$ $B\rho(D2) = 4.6174 \text{ Tm}$ $B\rho(D3) = 4.6174 \text{ Tm}$ $B\rho(D4) = 4.6174 \text{ Tm}$

Figure 1: Position spectrum at S4 for $^{132}\mathrm{Xe}$ Primary beam

Experiment No. 9

K.-H. Speidel et al.Magnetic moments of Xenon and tellurium isotopes near doubly-magic 132 Sn at relativistic beam energies.

Nucleus of interest: Primary beam : Production target:	$^{134}_{136}$ Te ($^{136}_{9}$ Se	$\begin{array}{l} \text{Coulex }) \\ 1{\cdot}10^9 \text{ pps} \\ 2.5 \text{ g/cm}^2 \end{array}$	$500 { m MeV/u}$	$\frac{d}{R_t} = 0.37$
First stage $^{136}Xe \rightarrow ^{134}Te:$				
Secondary beam: Yield of ¹³⁴ Te/incident ¹³⁶ Xe Charge states after prod. target	¹³⁴ Te	$4.5 \cdot 10^{-5}$	370.7 MeV/u fully stripped	0.4 mb (EPAX2)
Al degrader at S1 Al degrader at S2 Charge states after degrader		3121.9 mg/cm^2	² 150.6 MeV/u $Q_{\circ}=0.85$ $Q_{1}=0.14$	$\frac{d}{R} = 0.75$
Energy at reaction target (S4) Charge states at reaction target			$100.0 \ {\rm MeV/u} \ {\rm Q_{\circ}}{=}0.85$	
Slits : $S1 = \pm 1 \text{ cm}$ $S2 = \pm 3 \text{ cm}$ $S3 = \pm 10 \text{ cm}$				
Transmission of ¹³⁴ Te: At S1, after slits At S2, after slits At reaction target($\sigma_x(^{134}\text{Te}) = 1.5$ c	m)	$\begin{array}{c} 67.8 \ \% \\ 48.2 \ \% \\ 45.0 \ \% \end{array}$	Yield/inc	eident particle: $3.0 \cdot 10^{-5}$ $2.2 \cdot 10^{-5}$ $2.0 \cdot 10^{-5}$
Yield of 134 Te at S4/all fragments:		0.91		
Yield of 134 Te at S4/incident 136 Xe	2	$.0.10^{-5}$	$(2.0 \cdot 10^4 \text{ pps})$	
Second stage $^{134}\text{Te} \rightarrow ^{134}\text{Te}^*$	<			

Reaction target at S4	$^{208}\mathrm{Pb}$	50 mg/cm^2	100.0 MeV/u	$\frac{d}{B} = 0.05$
Energy of ¹³⁴ Te behind the reaction	target:		96.6 MeV/u	11
Yield of $^{134}\text{Te}^{\star}(2^+)/\text{incident} ^{134}\text{Te}$		$4.3 \cdot 10^{-5}$,	300 mb, 0.9 pps
Estimated p γ rate for ¹	$^{34}\text{Te}~(2^+$) (3.0 $\% \gamma$ eff	f. at 1.3 MeV)) : 94	$hr.^{-1}$
_ /		<i>/ / /</i>		

Slits : $S1 = \pm 1 \text{ cm}$ $S2 = \pm 3 \text{ cm}$ $S3 = \pm 10 \text{ cm}$

Reaction target = \pm 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : $7.9 \cdot 10^{-5}$ ($7.9 \cdot 10^{4}$)Yield of all fragments / incident particle before MUSIC at S4 : $2.8 \cdot 10^{-5}$ ($2.8 \cdot 10^{4}$)

 $B\rho(D1) = 7.8165 \text{ Tm}$ $B\rho(D2) = 7.8165 \text{ Tm}$ $B\rho(D3) = 4.7314 \text{ Tm}$ $B\rho(D4) = 4.7314 \text{ Tm}$

Additional information for g-factor measurment

Ferromagnetic matiral : External magnetic field : Expected Transiant magnetic Field (TF) : Expected precession angle $(\Phi^{exp}(2^+))$: Count rate for both field direction (Up/Dn) : Gadolinium (50 mg/cm²) ~ 0.08 Tesla 23 kTesla ($p_{1s}=0.03, q_{1s}=0.5$) 240 mrad 10 hr.⁻¹ (1.0 % γ eff.)

Figure 1: Position spectrum at S4 for $^{134}\mathrm{Te}$ setting

Figure 2: Time-of-flight vs energy loss in Music plot for 134 Te setting

Experiment No. 10

S. Mandal et al. Search for stable octupole deformation in neutron-rich of $^{142-144}$ Ba using relativistic Coulomb excitation.

Nucleus of interest: Primary beam : Production target:	$^{142}_{150}$ Ba ($^{150}_{9}$ Md 9 Be	$\left(\begin{array}{c} \text{Coulex} \end{array} ight) \ 5\cdot 10^9 \ \text{pps} \ 4.0 \ \text{g/cm}^2 \end{array} ight)$	$600 { m MeV/u}$	$\frac{d}{R_t} = 0.5$
First stage $^{150}Nd \rightarrow ^{142}Ba:$				
Secondary beam: Yield of ¹⁴² Ba/incident ¹⁵⁰ Nd	$^{142}\mathrm{Ba}$	$7.7 \cdot 10^{-6}$	$382.9~{\rm MeV/u}$	0.06 mb (EPAX2)
Charge states after prod. target			fully stripped	()
Al degrader at S1 Al degrader at S2 Charge states after degrader		$2450.0~\rm{mg/cm^2}$	$\begin{array}{c} 198.0 \ {\rm MeV/u} \\ {\rm Q_{\circ}}{=}0.86 \\ {\rm Q_{1}{=}0.13} \end{array}$	$\frac{d}{R} = 0.63$
Energy at reaction target (S4) Charge states at reaction target			$153.0 \ {\rm MeV/u} \ {\rm Q_{\circ}}{=}0.86$	
Slits : S1 = -1,+2 cm $S2 = \pm 3.5 \text{ cm}$ S3 = -2.7,+2.4 cm				
Transmission of 142 Ba:			Yield/inc	ident particle:
At S1, after slits		44.7 %		$3.5 \cdot 10^{-6}$
At S2, after slits	``	24.8 %		$1.9 \cdot 10^{-6}$
At reaction $\operatorname{target}(\sigma_x(^{142}\operatorname{Ba}) = 1.1 \operatorname{c})$	m)	23.4%		$1.8 \cdot 10^{-6}$
Yield of 142 Ba at S4/all fragments:		0.12		
Yield of 142 Ba at S4/incident 150 Nd	1	$.8 \cdot 10^{-6}$ (9	$9.0 \cdot 10^3 \text{ pps})$	
Second stage $^{142}Ba \rightarrow ^{142}Ba$	*:			

Reaction target at S4 ²	$^{208}\mathrm{Pb}$	300 mg/cm^2	$153.0 \ \mathrm{MeV/u}$	$\frac{d}{B} = 0.17$
Energy of 142 Ba behind the reaction t Yield of 142 Ba*(3 ⁻)/incident 142 Ba	arget:	$6.1 \cdot 10^{-6}$	134.8 MeV/u	7.0 mb, 0.06 pps

Estimated p γ rate for ¹⁴²Ba (3⁻) (3.0 % γ eff. at 1.3 MeV)) : 6 hr.⁻¹

Slits : S1 = -1,+2 cm $S2 = \pm 3.5 \text{ cm}$ S3 = -2.7,+2.4 cm

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : $1.4 \cdot 10^{-4}$ (7.1 $\cdot 10^{5}$) Yield of all fragments / incident particle before MUSIC at S4 : $1.7 \cdot 10^{-5}$ (8.7 $\cdot 10^{4}$)

 $B\rho(D1) = 7.8391 \text{ Tm}$ $B\rho(D2) = 7.8391 \text{ Tm}$ $B\rho(D3) = 5.4024 \text{ Tm}$ $B\rho(D4) = 5.4023 \text{ Tm}$

Figure 1: Position spectrum at S4 for $^{142}\mathrm{Ba}$ setting

2003/01/19 16.31

Figure 2: Time-of-flight vs energy loss in MUSIC plot for $^{142}\mathrm{Ba}$ setting

Zs. Podolyak, et al.:

<u>Prompt gamma spectroscopy and isomer tagging.</u> Deformation of five-quasiparticle states in the A \approx 180 mass region

Nucleus of interest:	¹⁷⁹ W							
Primary beam: Production target:	²⁰⁸ Pb ⁹ Be	10 ⁸ pp 1.6g/c	os m²	1GeV/	/u	d/R=0	.13	
Secondary beam Yield of ¹⁷⁹ W / incident ²⁰⁸ F Charge states after prod. ta	¹⁷⁹ W Pb arget			897 M 4.23 ^{. /} fully st	leV/u 10 ⁻⁵ (0.9 tripped:	952mb) 74+(57 73+(33 72+(-6)(EPAXII:(7.1%) 3.5%) 5.4%)).893 mb)
Al degrader at S1 Al degrader at S2 Charge states after degrac	8500 r Iers	- ng/cm²	2	- 293.5 fully st	MeV/u tripped:	1 } (74+(65 73+(30	d/R=0.76 5.8%) 0.6%)	
Energy at reaction target (Charge states at reaction t	S4) arget (S4)		234.5 fully st	MeV/u tripped:	72+(3 1 (74+) 174+(10)))0%)	
Slits: S1 \pm 15mm(open for ¹⁷⁹ W) S2 \pm 40mm(open for ¹⁷⁹ W) S3 \pm 15mm(open for ¹⁷⁹ W)								
Transmission of ¹⁷⁹ W(fully At S1 after slits At S2 after slits At S4 $(\sigma_x)^{179}$ W) = 1.5 cm)	strippe	d):	93.5 % 36.4 % 32.5 %	, , , , , , , , , , , , , , , , , , ,	Yield /	incide 3.96 [.] 1 1.02 [.] 1 0.85 [.] 1	nt particle I0 ⁻⁵ I0 ⁻⁵ I0 ⁻⁵	:
Yield of 179 W at S4 / all fractional fraction / all fraction	igment	s	0.23					
Yield of ¹⁷⁹ W at S4 / incid	ent 208	Pb		8.5 [.]	10 ⁻⁶	(8.5	[.] 10 ² pps)	
Yield of I=35/2- isomer at	S4(2.7	%)					23.0/s	
Second step: coulomb ex	citatior	ו						
Reaction target at S4 Energy of ¹⁷⁹ W behind the Yield of ¹⁷⁹ W(37/2-)/incider Yield of ¹⁷⁹ W(39/2-)/incider Estimated p y rate for ¹⁷⁹ W(Estimated p y rate for ¹⁷⁹ W(reactic nt ¹⁷⁹ W nt ¹⁷⁹ W (37/2-)((39/2-)(²⁰⁸ Pb on targe (35/2-) (35/2-) (3% y e (3% y e	(300 m et: fficienc	g/cm²) sy &109 sy &109	% taggi % taggi	2 2*10 1*10 ng effic ng effic	d/R=0.12 15.2 MeV) ⁻³ (2327m) ⁻⁴ (123m ciency): 2	/u ib) b) 0.5/h .5 [.] 10 ⁻² /h

Slits:

 $\begin{array}{rrrr} S1 & \pm 15mm \\ S2 & \pm 40mm \\ S3 & \pm 15mm \end{array}$

Reaction target ± 35mm

Yield of all fragments/ incident ²⁰⁸ Pb after S1 slits:	2.9 [.] 10 ⁵
Yield of all fragments/ incident ²⁰⁸ Pb before SC21:	2.9 [.] 10 ⁵
Yield of all fragments/ incident ²⁰⁸ Pb before MUSIC at S4:	3.6 [.] 10 ³
Yield of all fragments/ incident ²⁰⁸ Pb behind the reaction target:	2.5 [.] 10 ³

Bρ(D1) = 12.7 Tm

 $B\rho(D2) = 12.7 \text{ Tm}$

 $B\rho(D3) = 6.4 \text{ Tm}$

 $B\rho(D4) = 6.4 \text{ Tm}$

²⁰⁸Pb 1000.0 MeV/u + Be (1600 mg/cm²); Settings on ¹⁷⁹W ^{74+ 74+ 74+ 74+ 74+}; Config: DSWMDMMMWWWSDMSDMMMSMMMI dp/p=1.24%; Wedges: 0, AI (8500 mg/cm²), 0, 0, 0; Brho(Tm): 12.7396, 12.7396, 6.5086, 6.5086

rieia (pps/mm)

Experiment No. 12

J. Gerl et al.

Investigation of the structure and deformation of $^{185-187}$ Pb by γ -spectroscopy and lifetime measurements.

Nucleus of interest: Primary beam :	$^{186}{\rm Pb}$ (2 step fragment $^{238}{\rm U}$ 5.10 ⁸ pps	tation) 600 MeV/u	_
Production target:	$^9\mathrm{Be}$ 1.6 g/cm ²		$\frac{d}{R_t} = 0.3$
First stage $^{238}U \rightarrow ^{200}Rn:$			
Secondary beam: Yield of ²⁰⁰ Rn/incident ²³⁸ U	200 Rn $1.6 \cdot 10^{-4}$	$443.0~{\rm MeV/u}$	2.06 mb (EPAX2)
Charge states after prod. target	$Q_{\circ} = 0.56, Q_1 = 0.36, Q_2$	=0.07	0.01 mb (Exp.)
Al degrader at S1 Al degrader at S2 Charge states after degrader	$\begin{array}{c} 986.6 \ \mathrm{mg/cm^2} \\ 807.2 \ \mathrm{mg/cm^2} \\ \mathrm{Q_{\circ}}{=}0.16, \ \mathrm{Q_1}{=}0.46, \ \mathrm{Q_2}{=} \end{array}$	442.9 MeV/u 359.2 MeV/u =0.37	$\frac{d}{R} = 0.63$
Energy at reaction target (S4) Charge states after reaction target		$153.8 \ {\rm MeV/u} \ {\rm Q_{\circ}}{=}0.04$	
Slits : $S1 = \pm 1.0 \text{ cm}$ $S2 = \pm 3.0 \text{ cm}$ $S3 = \pm 10. \text{ cm}$			
Transmission of ²⁰⁰ Rn:		Yield/inc	ident particle:
At S1, after slits At S2, after slits	32.6 % 3.5 %	,	$5.2 \cdot 10^{-5}$ $5.4 \cdot 10^{-6}$
At reaction $\operatorname{target}(\sigma_x(^{200}\operatorname{Rn}) = 1.1 \operatorname{cm})$	m) 3.3 %		$5.3 \cdot 10^{-6}$
Yield of 200 Rn at S4/all fragments:	0.02		
Yield of 200 Rn at S4/incident 238 U	$5.3 \cdot 10^{-6}$ (2)	$2.6 \cdot 10^3 \text{ pps})$	
200			

Second stage 200 Rn $\rightarrow ^{186}$ Pb:

Reaction target at S4	$^{27}\mathrm{Al}$	500 mg/cm^2	$153.0 \ \mathrm{MeV/u}$	$\frac{d}{B} = 0.67$
Energy of ²⁰⁰ Rn behind the reaction	target:		67.8 MeV/u	10
Yield of ¹⁸⁶ Pb/incident ²⁰⁰ Rn		$3.1 \cdot 10^{-5}$,	2.9 mb, 0.08 pps
Yield of ¹⁸⁶ Pb/all nuclei		$1.3 \cdot 10^{-1}$		
Yield of ¹⁸⁶ Pb/isotopes of Pb		$2.0 \cdot 10^{-2}$		

Estimated p γ rate for ¹⁸⁶Pb (3.0 % γ eff. at 1.3 MeV)) : 9 hr.⁻¹

Some additional information

Yield of ¹⁸⁵Pb/incident ²⁰⁰Rn:

 $1.3 \cdot 10^{-5}$, 1.2 mb, 0.03 pps

Estimated p γ rate for ¹⁸⁵Pb (3.0 % γ eff. at 1.3 MeV)) : 4 hr.⁻¹

Yield of ¹⁸⁷Pb/incident ²⁰⁰Rn:

 $6.2 \cdot 10^{-5}$, 5.9 mb, 0.16 pps

Estimated p γ rate for ¹⁸⁶Pb (3.0 % γ eff. at 1.3 MeV)) : 18 hr.⁻¹

Slits : S1 = \pm 1.0 cm

 $S1 = \pm 1.0 \text{ cm}$ $S2 = \pm 3.0 \text{ cm}$ $S3 = \pm 10. \text{ cm}$

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : $1.6 \cdot 10^{-3}$ ($8.1 \cdot 10^{5}$)Yield of all fragments / incident particle before MUSIC at S4 : $3.2 \cdot 10^{-4}$ ($1.7 \cdot 10^{5}$)

 $\begin{array}{l} {\rm B}\rho({\rm D1})=7.8395 \ {\rm Tm} \\ {\rm B}\rho({\rm D2})=6.8409 \ {\rm Tm} \\ {\rm B}\rho({\rm D3})=5.2980 \ {\rm Tm} \\ {\rm B}\rho({\rm D4})=5.2979 \ {\rm Tm} \end{array}$

Figure 1: Position spectrum at S4 for $^{200}\mathrm{Rn}$ setting

Figure 2: Time-of-flight vs Position plot for $^{200}\mathrm{Rn}$ setting.